Another Fascinating Exhibit To Help You See Through The Dust

 

New settling and sedimentation exhibit at the Damen Dredging Experience
New settling and sedimentation exhibit at the Damen Dredging Experience

Sometimes, explaining a part of the dredging process can be as simple as seeing through the mixture. In this exhibit we can demonstrate what happens beneath the surface of the cargo in the hopper1,2,3. Along the way, we explain some quirky behaviour in other phases of the dredging process, also. The exhibit consists of five tubes in a frame, that can rotate around a horizontal axis. In the tubes are various types of soils. Each with their own settling behaviour. The exhibit was recently added to the Damen Dredging Experience. One more reason to highlight it here.

Samples in the settling and sedimentation exhibit
Samples in the settling and sedimentation exhibit

One major part in the dredging process is the hydraulic transport of particles in a carrier fluid. Pickup and transport have been touched upon in previous posts4,5. Here we concentrate on the end of the process: settling and deposition. This can be either in a hopper or on the discharge area. In both cases you will only see the fluid surface during the process and at best the top of the deposited sediment. How the material came there, was deposited and stacked up can’t be readily seen. As the tubes allow these processes to be observed from the side, we can follow the events.

Multi fraction sediment after settling
Multi fraction sediment after settling

The exhibit can be started by upending the frame with the tubes. The material that sat in the lower end gets now on the top end. They all are released at the same time and we see immediately see the differences in settling velocity for the different particle sizes6. The gravel falls down within ten seconds. The sand is slower and the clay even has problems getting started. One nice observation is the mixture of soils. Against the height of the tube, the fractions in the sample are released simultaneously. Still, the fractions separate over the fall height and stack up again in their original order. This not only happens in the tube. In the hopper or the discharge area, a widely graded sediment will sort itself to the various fractions.

Table of irregular shapes (Source: Wikipedia)
Table of irregular shapes (Source: Wikipedia)

Although for all the samples the particles are released simultaneously, you can still see a slight difference in settling velocity within each sample. This can be either due to slight variations in size that are possible within each mesh size used for sieving. Another cause for the differences might be the differences in shape. A perfectly spherical particle will have a faster settling velocity than an oddly shaped potato7.

Explanation of terminal velocity and hindered settling
Explanation of terminal velocity and hindered settling

And even then, the initial particles that fall down have a greater velocity than the particles in the bulk of the sample, even when having the same particle size and shape. This is due to the water flowing up around the particle. The upward flow is slowing down an adjacent particle. This interaction is called ‘hindered settling’. At high concentrations this can contribute to the efficiency of pipe line transport8. But for the settling it is really hindering the loading time.
At the very end of the settling, the particle gets deposited at the bottom, or on top of another. The water that is caught in between has to escape. This causes one last puff of fluid to flow upward and take the very find dust present upward. This happens with each particle that settles and causes the layer of dust to lift to the surface of the deposited sediment. So even when loading a cargo of gravel, you will always end up with a layer of dust on top. So, don’t judge the quality of the cargo just by the dust you see on top. Take a deeper sample or base your evaluation on the signals from the sensors from the screening tower.

Full cargo load of gravel, covered with dust. And the seagulls know that the dust layer also collects all the snacks
Full cargo load of gravel, covered with dust. And the seagulls know that the dust layer also collects all the snacks

References

  1. Hopper Loading: What Happens Beneath the Surface, Discover Dredging
  2. Graduation of Ben Sloof: Hopper Loading Model and Overflow Losses, Discover Dredging
  3. IADC Young Author Award for 1DH Hopper Loading Model of Jordy Boone, Discover Dredging
  4. Loose Sand, How Hard Can it Be? Discover Dredging
  5. Graduation of Arend van Roon: Detecting Flow Regime And Optimising Transport Efficiency, Discover Dredging
  6. Terminal velocity, Wikipedia
  7. Sphericity, Wikipedia
  8. Slurry Transport Fundamentals, Limit Deposit Velocity Framework – 2nd Edition, SA Miedema

See also

Super Materials To Improve Lifetime When Your Pump Is On Acid

Severely corroded impeller next to the original wear part
Severely corroded impeller next to the original wear part

Recently I had a discussion on LinkedIn about the pump killer #2: ‘wrong material’. There I chipped in with this disaster picture1. It was an application where we provided a suboptimal material for the acid environment. The consequences were disastrous, as seen above. Luckily, we were able to identify the problem and propose a different material. Now, I want to share our experience here, also.

What was the case? A client requested a DOP for handling tailings in their facility. Tailings is fine stuff. Leftover from mining or waste water processing. We are always careful on the grain size, as these fines may interfere with the operation of the mechanical seal. With appropriate measures, they can handle them. As the grains tend to be fresh, they can be razor sharp. The erosion on the wear parts is higher than normal fine silt. Oh, and most tailings come with acid in their water.

So, for this request we proposed a material that was usually good in wear resistance and had a moderate resistance against corrosion. Casting materials can be classified for their corrosion resistance with the Pitting Resistance Equivalent Number2. This PREN can be calculated with:

PREN = Cr + 3.3Mo + 16N

Two observations to this formula. One, this is only valid for normal Chromium content materials intended as Stainless Steel. Two, it does not mention the aggression of the corrosion. The acidity is usually provided in the request for quotation. But, a catalyst for the oxidising reaction is the conductivity of the fluid. Chloric acid and sulphuric acid may have the same pH, but due to their different ion and electron content, their conductivity differ. We did not check this in the above example, with the consequences in the picture.

Is increasing the chromium content in the wear alloy a solution to this corrosion problem? Mwah, moderately. Alloys like stainless steel profit from the above approach. But, wear materials use their Chromium for generating carbides. Those are the particles we require for the wear resistance. The Chromium provided is than not available for corrosion resistance. e.g. White cast iron with 3%C and 21%Cr will only have about 6% of Chromium to be used in the PREN. For white cast irons, it is better to use the following graph3 to find their corrosion resistance.

Corrosion Properties of Cast Iron Ball Materials in Wet Grinding. (Credit: Corrosion Feb 1992)
Corrosion Properties of Cast Iron Ball Materials in Wet Grinding. (Credit: Corrosion Feb 1992)

If corrosion is such an issue, why don’t we use Stainless Steel? Well, there you bite yourself in the tail. Stainless Steel in itself is relatively soft. It would have the same wear index of normal construction steel. By definition a Wear Rate Index of 1. For the sharp tailing material, that would be disastrous in itself. But, let’s play along. The stainless steel derives it’s corrosion resistance from the Chromium as explained before. Chromium’s trick is to generate a clear closed patina layer of Chromium Oxide protecting the underlaying material. In dredging conditions, the particles damage the protecting patina forever exposing fresh base material for more erosion and corrosion. In the end, the wear is accelerated and part life decreases dramatically.

Accelerated erosion process under corrosive conditions
Accelerated erosion process under corrosive conditions

Back to the pictured example, we expected some corrosion, but did not expect the higher conductivity. So, after three weeks, the client noticed a sudden los of performance. The leading edge of blades and the hub shroud were completely eaten away. As long as the trailing edge was there, it generated head. A single stone hit severed the front of the impeller from the hub and we received the above disaster picture. After damage evaluation, we sent a CW250 impeller and that one lasted.

A corrosion resistant DOP working in an acid tailings pit
A corrosion resistant DOP working in an acid tailings pit

References

  1. Pump killers: How to fight the 13 most common centrifugal pump failures? Number 2., Jos Overschie
  2. Pitting resistance equivalent number, Wikipedia
  3. Corrosion Properties of Cast Iron Ball Materials in Wet Grinding, Corrosion

See also

Student Interviews On Their Projects With Our Dredge Pump Slurry Test Circuit In Damen Nieuws

Damen dredge pump slurry test circuit on the outfitting quay in Nijkerk
Damen dredge pump slurry test circuit on the outfitting quay in Nijkerk

‘What sets men apart from boys is the size of their toys.’ And that wisdom applies to a lot of students that we’ve had at our company and have grown from boy to man working on our dredge pump slurry test circuit for their internship or graduation. As the test circuit has seen some intense activity these last months and yielded us with some very innovative concepts and possible new products, it was the right time to cover this interesting piece of equipment in the internal Damen Nieuws1 of January 2021 to share with all our colleagues. And that occasion in turn is an excellent opportunity to share with you the article and zoom into some of the details of the circuit.

General arrangement of the dredge pump slurry test circuit
General arrangement of the dredge pump slurry test circuit

Already more than ten years ago, we felt the need to have our own testing facility to experiment with the processes in our dredges or check the performance of new products2. After defining the specifications of the circuit, we had Hylke Visscher assisting us in designing the circuit for his internship. Subsequently he could actually supervise the manufacturing of the circuit for his graduation. Hylke worked in close cooperation with Arjan de Vries who in turn did his graduation on the building, outfitting and commissioning of the circuit. Both students from then are now esteemed and valuable colleagues as we have appreciated their performance on their projects.

After those ten years, we have a new generation of students working on the circuit. Arend van Roon recently graduated on his project with the circuit, as covered in my last post3. Currently Wim Kleermaker is preparing his experiments on the dredge pump. Upcoming is Williem Salim, not yet mentioned in the article, but now already starting his internship on the instrumentation of our laboratory. All project on the test circuit are supervised by Pieter van der Kooi as plant manager, Frank Bosman as student coordinator. Depending on the project, Ewout van Duursen, Suman Sapkota and me are supervising the student projects more on a subject level.

Various executions of a U-bend c-meter in the test circuit, for delivery and installed on a dredge
Various executions of a U-bend c-meter in the test circuit, for delivery and installed on a dredge

The odd thing you might notice in the loop of the test circuit is the U-bend directly after the dredge pump. Contrary to most first impressions, it is not to generate resistance, although it does so slightly. It is to measure how much sand has been transported. As the circuit is by nature closed, there is no way to check how much we’ve transported through the dredge pump. Sure, there is a density sensor4, but this will only indicate the so called volumetric density; how much material is there in the cross section. It will not differentiate between fast moving slurry and a slow sliding bed. In the extreme you could have a static bed, indicating a very high concentration. Multiplying this with a very high fluid speed, that is squeezed through the remaining aperture, you would expect an impressive production. Wrong! Not a single particle gets transported.

Enter: the U-bend. It measures the hydrostatic pressure differences over a certain hight in the upstream and downstream branches. This will cancel out the velocity differences but will yield the actual transported mass flow. So, that is how we can claim that we already dredged millions of cubic meters, all on the floor area of a 40 foot container flatbed.

Explanation of the U-bend measuring principle
Explanation of the U-bend measuring principle

References

  1. Testcircuit, Damen
  2. Innovation, Damen
  3. Graduation of Arend van Roon: Detecting Flow Regime And Optimising Transport Efficiency, Discover Dredging
  4. Production management, Damen

See also