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Nomenclature

Greek Symbols

𝛼 Concentration [−]
𝛼 Near bed concentration [−]
𝛼 Concentration of fraction k [−]
𝛼 Concentration in the bed cell [−]
𝛼 Concentration in the cell above the bed [−]
𝛼 Concentration in the cell after merging [−]
𝛽 Slope angle [∘]

Δ Specific sediment density [−]
�̇� Shear rate [1/𝑠]
𝜖 Dissipation of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
Γ Diffusion coefficient [𝑚 /𝑠]
𝜅 Von Karman constant [−]
𝜇 Dynamic viscosity [𝑃𝑎 ⋅ 𝑠]
𝜇 Effective viscosity (dynamic) [𝑃𝑎 ⋅ 𝑠]
𝜈 Kinematic viscosity [𝑚 /𝑠]
𝜈 Eddy viscosity (kinematic) [𝑚 /𝑠]
𝜈 Molecular viscosity (kinematic) [𝑚 /𝑠]
𝜈 Effective viscosity: summation of eddy and molecular viscosity [𝑚 /𝑠]
𝜔 The specific turbulence dissipation rate [1/𝑠]
Φ Pickup flux [−]
𝜙 Angle of internal friction [∘]

𝜙 Volume flux through a face [𝑚 /𝑠]
Ψ Shape factor [−]
𝜌 Density [𝑘𝑔/𝑚 ]

𝜌 Density of fraction k [𝑘𝑔/𝑚 ]

𝜌 Mixture density [𝑘𝑔/𝑚 ]

𝜌 Solids density [𝑘𝑔/𝑚 ]

𝜌 Water density [𝑘𝑔/𝑚 ]

𝜎 Schmidt number [𝑃𝑎]
𝜏 Shear stress [𝑃𝑎]
𝜏 Yield stress [𝑃𝑎]
𝜃 Shields number [−]
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𝜃 Critical shields number [−]
𝜃 Critical shields number adjusted for high speed and slope [−]
Roman Symbols

j Mixture flux velocity vector [𝑚/𝑠]
S Surface vector of a face [𝑚 ]

T Viscous stress tensor [𝑃𝑎]
T Turbulent stress tensor [𝑃𝑎]
u Velocity vector [𝑚/𝑠]
u Velocity vector of fraction k [𝑚/𝑠]
u Mixture centre of mass velocity vector [𝑚/𝑠]
u Slip velocity vector of fraction k [𝑚/𝑠]
𝐶 Constant for rough wall function [−]
𝐶 Drag coefficient [−]
𝑐 Mass fraction of k [𝑚]
𝐷 Particle diameter [𝑚]
𝑑 Pipe diameter [𝑚]
𝐷∗ Bonneville parameter [−]
𝐷 Mass median particle diameter: diameter for which 50% is finer [𝑚]
𝑑 Hydraulic diameter [𝑚]
𝐸 Erosion flux [𝑘𝑔/(𝑚 ⋅ 𝑘𝑔)]
𝑔 Gravitational acceleration [𝑚/𝑠 ]
𝐻 Height of the hopper [𝑚]
ℎ Height of the bed cell [𝑚]
ℎ Height of the cell above the bed [𝑚]
ℎ Height of the cell after merging [𝑚]
ℎ Height of the water above the overflow [𝑚]
ℎ Height of the water above the bed [𝑚]
𝐼 Turbulence intensity [−]
𝑘 Turbulent kinetic energy [𝐽/𝑘𝑔]
𝐿 Length of the hopper [𝑚]
𝑁 Bagnold number [−]
𝑛 Hindered settling exponent [−]
𝑛 Porosity [𝑚]
𝑛 Hindered settling exponent for fraction k [−]
𝑂𝑉 Cumulative overflow losses [−]
𝑂𝑉 Overflow flux [−]
𝑃 Production of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
𝑝 Pressure [𝑃𝑎]
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𝑃 Buoyant dissipation of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
𝑝 Dynamic pressure [𝑃𝑎]
𝑄 Flow rate [𝑚 /𝑠]
𝑞 Flow rate per unit width [𝑚 /(𝑚 ⋅ 𝑠)]
𝑄 Flow rate coming into the hopper [𝑚 /𝑠]
𝑄 Flow rate going out the hopper [𝑚 /𝑠]
𝑅𝑒 Reynolds number [−]
𝑅𝑒 Reynolds particle number [−]
𝑆 Sedimentation flux [𝑘𝑔/(𝑚 ⋅ 𝑘𝑔)]
𝑡 Time [𝑠]
𝑈 Depth averaged horizontal velocity [𝑚/𝑠]
𝑢 Horizontal velocity [𝑚/𝑠]
𝑢∗ Shear velocity [𝑚/𝑠]
𝑢 Non-dimensional velocity near the wall [−]
𝑣 Hopper load parameter [𝑚/𝑠]
𝑣 Sedimentation velocity [𝑚/𝑠]
𝑊 Width of the hopper [𝑚]
𝑤 Vertical velocity [𝑚/𝑠]
𝑤 Settling velocity single grain [𝑚/𝑠]
𝑤 Vertical velocity of fraction k [𝑚/𝑠]
𝑤 Hindered settling velocity [𝑚/𝑠]
𝑤 , Settling velocity single grain of fraction k [𝑚/𝑠]
𝑤 Vertical slip velocity of fraction k [𝑚/𝑠]
𝑦 Non-dimensional wall distance [−]



1
Introduction

For the Multidisciplinary Project of the master Offshore and Dredging Engineering a literature study is
done about the loading of Trailing Suction Hopper Dredgers. The TSHD is a dredging ship that has a
full sailing capacity and is used to maintain waterways or reclaim land. From the side of the ship, one
or two suction pipes descend to the bottom of the seabed. Due to lower pressure in the pipes, the
material at the bed will be sucked inward and discharged in the hopper.
The performance of such a TSHD is described by its production: the amount of sediment loaded in
the hopper per unit time. Inherent to the production is the sedimentation in the hopper. The material
which does not settle, flows through the overflow. These overflow losses can reach up to 30% of the
total volume dredged.
In section 2.1, the flow in the hopper is described. In Paragraph 2.2, a review is given on research
about buoyant jets. Research on density current is briefly summarized in Paragraph 2.3. Different
relations for settling are given in Paragraph 2.4. In paragraph 2.5, it is explained how to calculate the
sedimentation velocity in a hopper. And in Paragraph 2.6, different suspended sediment equations are
given.
Several hopper models exist. All these models have their own assumptions and take into account
the processes in Figure 2.3 to a greater or lesser extent. In Paragraph 2.7, the different models are
discussed.
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2
Hopper modelling

2.1. Processes in the hopper

Groot[4] and Van Rhee[10] did laboratory tests with a hopper on model scale. Groot used a hopper
of dimensions 3.0 x 0.66 x 0.10 m (L x B x H). During measurements with only water, he measured a
logarithmic velocity profile over the height. During measurements with water-sand mixtures, however,
there appeared to be a density current at the bottom.

Van Rhee did experiments with a model hopper which had a length of 12 m, a width of 3.08 m and a
height of 2.5 m. The maximum overflow level was situated at 2.25 m from the bottom. Just like Groot,
a density current was observed at the bottom.

Figure 2.1: Velocity of the density current (Test 8)

The horizontal velocities during Test 8 are shown in Figures 2.1 and 2.2. During the experiment, the
EMS was moved over the height. Once the probe was buried, it would be relocated by 20cm in vertical
direction.
At the start of the test, the water depth was 1 m and the discharge was about 0.1 m/s. In case of a
uniform velocity profile, one could expect a horizontal velocity of 0.1/(1 ⋅ 3.08) ≈ 0.03𝑚/𝑠. Instead,
a density current with velocities of up to 0.6 m/s were measured. At the beginning and the end of
the loading process, the highest velocities in the density current were measured. This can be seen in

2
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Figure 2.2: Flow field in the hopper (Test 8)

Figure 2.1.

Figure 2.2 is very similar to Figure 2.1, but in Figure 2.2 the instrument was initially located at a larger
distance from the bottom(𝑧=1.25 m). A small negative velocity is measured above the density current.
This negative velocity is caused by the entrainment of water in the inflowing mixture with a relatively
high density.

inflow overflow

�

2
u

1

3

4

Figure 2.3: Schematic flow field in the hopper with the concentration ( ) and horizontal velocity ( ) over the height.

Van Rhee gives an overview of the flow in the hopper and the different processes in it (Figure 2.3).
In zone 1, a buoyant yet can be found. When the mixture enters the hopper it is denser than its
surroundings. The mixture will accelerate towards the bottom. Due to the high velocity and turbulence,
an erosion pit is created under the buoyant jet. After leaving the erosion pit, the mixture will flow as a
density current over the bottom (zone 2). The interaction between the density current and the bed is
important. The bed is rising. The speed with which the bed rises, the sedimentation velocity, depends
on the bed shear.
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Above the density current (zone 3), the horizontal velocity is in the opposite direction. This is caused
by entrainment into the buoyant jet. In vertical direction, the flow is upwards. Depending on the
magnitude of this vertical velocity, the particle diameter, the concentration and turbulent diffusion, a
particle will move up or down. Zone 4 is a layer of relatively clean water flowing towards the overflow.

In the following sections, a literature study is done about those different processes.

2.2. Buoyant Jets

A buoyant jet is an upward directed jet with lower density than its surroundings. Hence this density
difference, an upward buoyant force is exerted on the jetted fluid. The situation in the hopper is the
same but upside down.
In literature, distinction is made between circular and planar jets. It can be assumed that the jet in
the hopper is planar.

Rodi[15] gives a good relation for planar buoyant jets mainly based on the experiments of Kotsovinos[17].
Kotsovinos did experiments on planar jets with an inlet of 20x130mm. This is considerably smaller than
the planar jet in the hopper. This could cause inaccuracy.
Yannopoulos[16] has derived a relation based on the experiments of Ramaprian & Chandrasekhara[18].
The inlet of the experimental setup of Ramaprian & Chandrasekhara was 5x250mm. This is again
smaller than the situation in the hopper.
Yannopoulos distinguishes two regimes: the jet regime and the plume regime. The jet regime is close
to the inlet where the flow is still accelerating or decelerating. Further away from the inlet, the buoy-
ancy force becomes equal to the friction force. The velocity then becomes constant. This is the plume
regime. In his simulations, Van Rhee observed that the velocity at the bottom of the jet is independent
of the inlet velocity (for constant discharge). This means that the plume regime is reached at the
bottom of the hopper. The relations of Yannopoulos are more convenient than the relations of Rodi,
since also the concentrations can be calculated with Yannopoulos. In the plume regime the velocity
can be calculated as follows:

𝑤
𝑤 = 𝐴 𝐹 (2.1)

𝑤 is the centre line velocity and 𝑤 the inlet velocity. 𝐹 is the Froude number:

𝐹 = 𝑤

√9.81𝑑
(2.2)

In which 𝜌 is the density at the inlet and 𝜌 the density of the surroundings. 𝑑 is the width of the
inlet.

𝐴 = (2𝑌
√𝜋

√𝐾
𝜆 𝜆 ) 𝐾 (2.3)

Also the centre line concentration can be calculated:
𝛼
𝛼 = 𝐵 𝐹 𝑧

𝑑 (2.4)

𝐵 = (𝜆𝜆
𝑌 √2
𝜋𝐾 ) (2.5)

In the hopper, the jet is influenced by the wall. Unfortunately, no thorough research has been done on
buoyant wall jets. By assuming that the wall acts as a symmetry plane with no friction, the equations
above can still be used.
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Table 2.1: Input parameters for Equations 2.3 and 2.5

𝜆 1.1
𝜆 1.18
𝜆 1.21
𝐾 0.132
𝐾 0.160
Y 1.01

2.3. Density Currents

An important research on density currents is the research of Parker[19]. By using the so called top-hat
assumption, Parker derived balances for the mass, momentum and concentration:

𝛿ℎ
𝛿𝑡 +

𝛿𝑈ℎ
𝛿𝑥 = 𝑤 (2.6)

𝛿𝐶ℎ
𝛿𝑡 + 𝛿𝑈𝐶ℎ𝛿𝑥 = −𝑣 (1 − 𝑛 − 𝛼 ) + 𝑤 𝛼 (2.7)

𝛿𝑈ℎ
𝛿𝑡 + 𝛿𝑈 ℎ

𝛿𝑥 = − / Δ𝑔𝛿𝐶ℎ𝛿𝑥 + Δ𝑔𝐶ℎ tan(𝛽) − 𝑢∗ (2.8)

𝑢∗ is the shear velocity.
𝑤 is the entrainment velocity and can be calculated with: 𝑤 = 𝑒 ∗ 𝑈.
𝛼 is the near bed concentration and can be calculated with: 𝛼 = 𝑟 ∗ 𝐶.
𝛼 is the concentration above the density current.
𝛽 is the slope.
Δ is the submerged specific gravity: .
For the calculation of 𝑟 and 𝑒 , the reader is directed to the article of Parker[19].

The top-hat assumption means that the velocity and concentration are constant over the height of the
density current. Therefore 𝑈 and 𝐶 are the mean values. In reality, the velocity and concentration vary
over the height of the density current. Recently, a lot of research has been done to shape factors. For
example, Sequeiros[20] measured the shape factors for different flow regimes. Equations 2.6, 2.7 and
2.8 then have to be adjusted slightly to add the shape factors.

2.4. Settling

The settling velocity is an important parameter for hopper flow. However, finding a good formulation
of the settling velocity is difficult. The settling velocity of a single grain in a quiescent surrounding fluid,
the terminal settling velocity, can be derived by using the balance of gravity and drag. The following
formula can be obtained:

𝑤 = −√4𝑔Δ𝐷Ψ3𝐶 (2.9)

Δ is the specific density and is defined as (𝜌 − 𝜌 )/𝜌 . Ψ is the shape factor and is a correction for
the difference of nominal and sieve diameter. The drag depends on the frontal surface which can be
calculated with the sieve diameter. The gravity force is calculated with the nominal diameter. Therefore,
Ψ is defined as:

Ψ =
𝑀
𝜌 𝐷

(2.10)
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For perfect spheres the shape factor is exactly 1. For sand grains it is around 0.7.

The 𝐶 in Equation 2.11 depends on the Reynolds Particle Number:

𝑅𝑒 = 𝑤 𝐷
𝜈 (2.11)

For perfect spheres the following empirical relations for 𝐶 are found:

𝑅𝑒 ≤ 1 → 𝐶 =
1 < 𝑅𝑒 < 2000 → 𝐶 = +

√
+ 0.34

𝑅𝑒 ≥ 2000 → 𝐶 = 0.4
(2.12)

The formula of 𝐶 for the laminar region and the turbulent region can be substituted into Equation
2.11. This gives for the laminar region:

𝑤 = −ΨΔ𝑔𝐷18𝜈 (2.13)

And for the turbulent region this gives:

𝑤 = −1.8√ΨΔ𝑔𝐷 (2.14)

The transition regime has to be solved iteratively.

It can be questioned if solving the settling velocity iteratively with Equations 2.11 and 2.12 gives a
correct outcome for natural grains since Equation 2.12 is the drag coefficient for perfect spheres.
Numerous experiments have been done to arrive at similar formulations for natural grains. For example
Cheng[36] compared different researches. The papers he compared mainly arrived at drag coefficients
of approximately 32/𝑅𝑒 and 1.1 for the Stokes and turbulent regime, respectively . Cheng didn’t use
the form factor in Equation 2.11. This then gives:

𝑤 = −Δ𝑔𝐷24𝜈 and 𝑤 = −1.1√Δ𝑔𝐷 (2.15)

For the laminar region, Cheng and the iterative method with Ψ = 0.7 correspond very well. For the
turbulent regime they differ. Cheng also made a fit which can be used explicitly over the whole range
of diameters:

𝑤 𝑑𝐷
𝜈 = −(√25 + 1.2𝐷∗ − 5)

.
(2.16)

Ferguson and Church[37] also compared different researches and added some experiments of their
own. After fitting the data, they arrived at the following empirical formula:

𝑤 = − Δ𝑔𝐷
𝐶 𝜈 + (0.75𝐶 Δ𝑔𝐷 ) . (2.17)

This formula is valid for all regimes. For perfectly round particles the 𝐶 = 18 and 𝐶 = 0.4. For natural
grains, Ferguson and Church advise 𝐶 = 18 and 𝐶 = 1.0 when the sieve diameter is used and 𝐶 = 20
and 𝐶 = 1.1 when the nominal diameter is used.
Another emperical relation is the relation of Ruby and Zanke:

𝑤 = −10𝜈𝐷 (√1 + Δ𝑔𝐷
100𝜈 − 1) (2.18)
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Figure 2.4: Grain diameter versus terminal settling velocity with . ⋅ m /s

The equations described above are plotted in Figure 2.4. The first thing which can be seen is that
the settling velocities for perfect spheres calculated with Ferguson and Church and with the iterative
method (Ψ = 1) are very similar. Secondly, it can be observed that both empirical relations for natural
grains, Ferguson & Church and Ruby & Zanke, are also similar. However, they differ with the findings
of Cheng.
All in all, it can be concluded that it is hard to estimate the settling velocity. Each excavation site has
its own type of sand with its own shape. This gives large variation is settling velocities. The estimation
of the settling velocity will probably be the highest contribution to inaccuracy of the model. As can be
seen in Figure 2.4, particles with the same diameter but different grain shapes can easily differ 20%
in settling velocity.

textbfHindered Settling
For an increased volume concentration, the settling velocity decreases due to an increasing drag caused
by water flowing upwards. This is called hindered settling and can be described by the relation of
Richardson and Zaki[38]:

𝑤 = 𝑤 (1 − 𝛼) (2.19)

Based on experiments Richardson and Zaki found values for n:

𝑅𝑒 ≤ 0.2 → 𝑛 = 4.65
0.2 < 𝑅𝑒 < 1 → 𝑛 = 4.35𝑅𝑒 .

1 < 𝑅𝑒 < 200 → 𝑛 = 4.45𝑅𝑒 .

𝑅𝑒 ≥ 200 → 𝑛 = 2.39
(2.20)

Two more convenient relations are the relations of Rowe and Garside & Al-Dibouni:

𝑛 =
𝑎 + 𝑏𝑅𝑒
1 + 𝑐𝑅𝑒 (2.21)
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Table 2.2: Constants hindered settling

Author 𝑅𝑒 Concentration 𝑎 𝑏 𝑐 𝛼
Richardson & Zaki 0.000185 < 𝑅𝑒 < 7150 0.05 < 𝛼 < 0.65 - - - -
Garside & Al-Dib. 0.001 < 𝑅𝑒 < 3 ⋅ 10 0.04 < 𝛼 < 0.55 5.1 0.27 0.1 0.9
Rowe 0.2 < 𝑅𝑒 < 1 ⋅ 10 0.04 < 𝛼 < 0.55 4.7 0.41 0.175 0.75

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4

Re
p
[-]

2

2.5

3

3.5

4

4.5

5

5.5

6

n
[-

]

Richardson and Zaki

Rowe

Garside and Al-Dibouni

Figure 2.5: Reynolds Particle Number versus the exponent for hindered settling

The relation of Rowe has a smaller range for 𝑅𝑒 than Garside & Al-Dibouni and Richardson & Zaki,
but for this thesis that is not a problem. For particles of D=60𝜇𝑚 the 𝑅𝑒 is approximately 0.2 and for
D=1000𝜇𝑚 the 𝑅𝑒 is approximately 100.

Both Richardson & Zaki and Garside & Al-Dibouni developed their equations by doing experiments
with monodisperse perfect spheres. It appears that the shape of the particles has influence on the
hindered settling effect. Generally, it is found that for natural sand the exponent is slightly higher than
Richardson & Zaki[40][41]. Just like with the settling velocity, with the determination of the hindered
settling is causing a lot of inaccuracy.

2.5. Sedimentation and Erosion

The sedimentation in a hopper occurs under high concentration. Van Rhee[10] executed closed flume
experiments to determine the effect of the bed shear on the sedimentation velocity for high near bed
concentrations.

Every experiment started by pumping a concentrated mixture at a higher velocity than the deposition
velocity through the circuit. The deposition velocity is the velocity at which a stationary bed is formed
in a pipe, so at the beginning of every experiment no stationary bed was present in the circuit. Parallel
to the section in Figure 2.6, a bypass was installed. By partly closing the butterfly valve, the velocity
in the measurement section decreased and the flow rate in the bypass increased. Hence this suddenly
decreased velocity, sedimentation started to occur. By measuring the conductivity it could be measured
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Figure 2.6: Side view of the test arrangement (mixture flows from right to left)

Figure 2.7: Measurement section (left) and a close-up of the arrangement of the conductivity probes (right)

when the bed-surface passed a probe. All probes were placed at different vertical position from the
bottom. By measuring the time difference of the passing of the bed between probes, the sedimentation
velocity was calculated. The time difference for both probes 1 and 3 and probes 2 and 4 was measured.

Table 2.3: Height of the probes above the bottom

probe z[mm]
1 5
2 10
3 15
4 20

Van Rhee noted that the sedimentation velocities between probes 1 and 3 were a bit lower than the
sedimentation velocity between probes 2 and 4, since the measurements with probes 1 and 3 were
still influenced by the decreasing flow velocity. Therefore, Van Rhee only used probes 2 and 4.

To test the influence of the initial velocity, experiments were done for both low and high initial velocities.
The low and high velocities before partly closing the valve were respectively 2.7 and 3.7 m/s. In Figure
2.8 the PSDs of the different sands are shown.

An important parameter for the sedimentation velocity is the bed porosity. It appeared that the packing
of the grains depends on the flow velocity at which sedimentation occurs. For the sand with 𝐷 =
125𝜇𝑚, the following fit could be made:

𝛼 = 0.495 + 0.085𝑈 (2.22)

Figure 2.10 shows the measured sedimentation velocity versus the Shields parameter. 𝑣 is the
sedimentation velocity without bed shear. The Shields parameter is a measure for the shear stress
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Figure 2.8: Particle Size Distributions of the sand used in the experiments

Figure 2.9: Bed concentration versus velocity

versus gravity force and is defined by:

𝜃 = 𝜏
(𝜌 − 𝜌 )𝑔𝐷 =

𝑢∗
𝑔Δ𝐷 (2.23)

For D the 𝐷 is used, Δ = (𝜌 − 𝜌 )/𝜌 . It can be seen that the sedimentation velocity decreases for
higher Shields parameters:

𝑅(𝜃, 𝑐 ) = 𝑣
𝑣 ,

= {
1 − for 𝜃 ≤ 𝜃
0 for 𝜃 > 𝜃

(2.24)

In which 𝜃 is approximately 4.5. The sedimentation velocity can then be calculated with:

𝑣 = 𝑅(𝜃, 𝛼 )𝑣 , = 𝑅(𝜃, 𝛼 )
−𝛼 𝑤

1 − 𝑛 − 𝛼 (2.25)

Equation 2.24 is, however, a very rough fit of Figure 2.10. Some measurements are far removed from
this fit.
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Figure 2.10: Relative sedimentation velocity versus Shields parameter

An frequently used expression for the sedimentation velocity is:

𝑣 = 𝑆 − 𝐸
𝜌 (1 − 𝑛 − 𝛼 ) (2.26)

In which 𝑆 is the sedimentation flux[𝑘𝑔𝑚 𝑠 ], 𝐸 is the erosion flux[𝑘𝑔𝑚 𝑠 ], 𝜌 is the density of
the particles[𝑘𝑔𝑚 ], 𝑛 is the porosity[-] and 𝛼 is the near bed concentration[-]. The settling flux is
determined by:

𝑆 = −𝜌 𝛼 𝑤 (2.27)

Where 𝑤 is the hindered settling velocity[m/s]. The erosion flux can be calculated with the empirical
pick-up function of Van Rijn[30]:

Φ = 𝐸
𝜌 √𝑔Δ𝐷

= 0.00033𝐷 .
∗ (𝜃 − 𝜃𝜃 ) (2.28)

In which Φ is the pickup flux[-] and 𝐷∗ is the Bonneville parameter:

𝐷∗ = 𝐷√
Δ𝑔
𝜈 (2.29)

𝜈 is the kinematic viscosity of the ambient fluid[𝑚 /𝑠]. The critical Shields parameter 𝜃 can be read
out of the Shields curve or calculated by one of the several fits. For example Brownlie[31]:

𝜃 = 0.2𝑅𝑒 . + 0.06𝑒 . .
(2.30)

The Particle Reynolds number, 𝑅𝑒 , is a measure of the particle inertia forces versus viscous forces:

𝑅𝑒 = 𝐷√Δ𝑔𝐷
𝜇 (2.31)

By estimating the settling flux (2.27), the pickup flux was obtained (Figure 2.11). A large difference
between the pick function of Van Rijn and the measurements can be seen. In the experiments of Van
Rijn, the maximum concentration was nearly zero. Figure 2.11 clearly shows the influence of the near
bed concentration.

In a recent article about breaching, Van Rhee[33] gives a pickup function which depends on the near
bed concentration:

Φ = 𝐴1 − 𝑛 − 𝛼
1 − 𝑛

𝜃
𝜃 (2.32)
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Figure 2.11: Measurements of Van Rhee under high concentration (125 ) and the pickup function of Van Rijn (2.28)

In which 𝐴 is 0.000616 and 𝜃 can be caculated with:

𝜃 = 𝜃 (sin(𝜙 − 𝛽)sin(𝜙) + 𝑣𝑘
𝑛 − 𝑛
1 − 𝑛

1
Δ(1 − 𝑛 )) (2.33)

β

um

Figure 2.12: Positive slope angle.

𝜃 is the critical Shields value calculated with Equation 2.31. The
first term between the brackets is the influence of the slope on the
critical Shields value. 𝛽 is the slope angle and 𝜙 is the angle of internal
friction. The slope angle is positive when the mixture is running down
the slope (Figure 2.12).
The second term in Equation 2.33 is the effect of dilatancy, which is
important for 𝑣 >> 𝑘 , i.e. high speed erosion. 𝑣 and 𝑘 are the
erosion speed and permeability, respectively. Since in a hopper is
smaller than 3, the second term can be assumed to be zero.

2.6. Suspended sedimentation transport

Multi-phase flow can be found everywhere in nature and engineering. Different two-phase flows which
can be found are solid-liquid, solid-gas, liquid-gas or two immiscible fluids. This thesis is about the
multi-phase flow which falls into the category of solid-liquid flow, also called suspended sedimentation
transport. Suspended sedimentation transport can be divided in two types of modelling: Lagrangian
and Eulerian.

Lagrangian
The difference between these two types of modelling lies in the choice of reference frame. With
Lagrangian modelling the reference frame is following the individual particles. The trajectory of ev-
ery particle is described by Newton’s second law. This means the trajectory of every particle can be
determined. The advantage of this approach is it’s accuracy. The influence of the particle on the
surrounding liquid can accurately be calculated, but also the particle-particle interactions can be cal-
culated precisely. A disadvantage is the calculation effort needed when the amount of particles is big.
Therefore this approach is mainly used when particles are relatively big compared to the fluid domain.

Eulerian
In the Eulerian approach the reference frame is chosen to be fixed. To calculate the velocity of every
phase, the continuity and momentum equation is solved for each phase. This can only be done if
the characteristics of the particles can be described as a continuum. This is only possible for small
particles. It can be questioned if continuum holds for coarse sand or gravel. To simulate gravel the
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Lagrangian method could be needed. Luckily, we know that coarse sand or gravel directly settles on
the bed. To calculate the overflow losses, particle diameters from approximately 70 to 400 𝜇𝑚 are of
interest. Particles of this size are small enough to simulate with an Eulerian approach.

Also the Eulerian approach can be subdivided into different types: Euler-Euler and Drift Flux.

2.6.1. Euler Euler

Every fraction is denoted by its value of k. Then it follows:

𝛼 = 𝑉
𝑉 (2.34)

Here 𝛼 is the concentration of fraction k. 𝑉 is the volume of fraction k and 𝑉 is the total volume. If
the concentrations of the different fractions are summed we get:

∑𝛼 = 1 (2.35)

In the Euler Euler approach, every fraction has its own continuity and momentum equation:

𝜕𝛼 𝜌
𝜕𝑡 + ∇ ⋅ 𝛼 𝜌 u = 0 (2.36)

𝜕𝛼 𝜌 u
𝜕𝑡 + ∇ ⋅ (𝛼 𝜌 u u ) = −∇𝛼 𝑝 + ∇ ⋅ (𝛼 T + 𝛼 T ) + 𝛼 𝜌 g + 𝛼 m (2.37)

T and T are the contributions of the viscous and turbulent stresses, respectively. T is expressed as
follows:

T = 𝜇 (∇u + ∇u − 23∇ ⋅ u I) (2.38)

Normally for incompressible flow, the third term is omitted, but since ∇ ⋅ u ≠ 0 this is not possible for
suspended sediment transport. The calculation of T depends on the turbulence modelling.

m represents the momentum transfer between the phases. The challenge with Euler Euler is the
determination of this momentum transfer. Incorrect calculation of the momentum transfer easily leads
to numerical instabilities and inaccuracy. When correctly used, an Euler-Euler approach is more accurate
than the Drift Flux.

2.6.2. Drift Flux

With a Drift Flux model, the mixture is considered as a whole instead of several separate phases. The
continuity equation is obtained, by adding the the continuity equations of the different phases.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌 u = 0 (2.39)

The mixture density can be calculated with:

𝜌 = ∑𝛼 𝜌 (2.40)
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Also the mixture momentum equation is obtained by adding the the momentum equations of the
different phases:

𝜕𝜌 u
𝜕𝑡 + ∇ ⋅ (𝜌 u u ) = −∇𝑝 + ∇ ⋅ (T + T −∑𝛼 𝜌 u u ) + 𝜌 g (2.41)

For the derivation of Equations 2.49 and 2.41, the reader is directed to Appendix A of Brennan[21].
From adding the momentum equations of the different fractions, it also follows that:

u =
∑ 𝛼 𝜌 u

𝜌 (2.42)

This is called the mixture centre of mass velocity.

When the different momentum equation are added the term 𝛼 m cancels out. Every force of each

phase exerts an opposite force to another phase, so ∑ 𝛼 m = 0. This is very convenient and makes
Drift Flux easier to apply than Euler Euler.

T and T , again, are the contribution of the viscous and turbulent stresses respectively. T is
calculated as follows:

T = 𝜇 (∇u + ∇u − 23∇ ⋅ u I) (2.43)

The concentration of the different fraction are determined with the advection-diffusion equation:

𝜕𝛼
𝜕𝑡 + ∇ ⋅ (𝛼 u ) = ∇ ⋅ (Γ ∇𝛼 ) (2.44)

In which Γ is the turbulent diffusion coefficient and u the fraction velocity. Goeree[23] derived a
formula for the fraction velocity:

u = u + u = u + u −∑𝑐 u (2.45)

The mass fraction, 𝑐 can be calculated with:

𝑐 = 𝜌 𝛼
𝜌 (2.46)

The slip velocity u is the velocity of a fraction compared to the fluid phase:

u = u − u (2.47)

In horizontal direction this is assumed to be zero. In vertical direction it is:

𝑤 = 𝑤 , (1 − 𝛼 ) (2.48)

Note that 𝑤 , is negative.

2.6.3. Mixture centre of mass velocity and mixture flux velocity

For the derivation of the pressure equation, the continuity equation is needed. As explained earlier,
the correct continuity equation for the mixture centre of mass velocity, u , is:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌 u = 0 (2.49)
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This means:
∇ ⋅ u ≠ 0 (2.50)

However, very often, still ∇ ⋅ u = 0 is assumed. When ∇ ⋅ u = 0 is assumed not the mixture centre of
mass velocity, but the mixture flux velocity is calculated:

j = ∑𝛼 u (2.51)

For j indeed the following continuity equation is valid:

∇ ⋅ j = 0 (2.52)

Although, the results between usage of j and u do not differ that much, it is incorrect to use j .
Furthermore with j , Equation 2.45 cannot be used, since u is unknown. Instead, the following
equation for the fraction velocity needs to be used:

u = j + u = j + u −∑𝛼 u (2.53)

The slip velocity, u , can still be calculated with Equation 2.48.

2.6.4. Turbulence modelling

The starting point for turbulence modelling is separating the velocity into a main velocity and velocity
fluctuation:

u = u+ u (2.54)

By substituting this into the Navier-Stokes equation(Equations 2.41 and 2.37) and doing some deriva-
tions, it can be found that:

T = −𝜌u u (2.55)

Since its effect on the mean flow is like that of a stress term, this term is known as the Reynolds stress.
The vertices transport momentum across the fluid. When a velocity gradient is present in the mean
flow, faster moving layers will be decelerated and slower layers will be accelerated due to this transport
of momentum.

To obtain equations containing only the mean velocity and pressure, we need to close the momentum
equations by modelling the Reynolds stress term. This is called the closure problem. Boussinesq was
the first to attack the closure problem, by introducing the concept of eddy viscosity. The relation he
proposed is called the Boussinesq hypothesis:

− 𝜌u u = 𝜇 (∇u+ ∇u ) − 23 (𝜇 ∇ ⋅ u+ 𝜌𝑘) I (2.56)

In which 𝑘 is the turbulent kinetic energy and is defined by 𝑘 = (𝑢 + 𝑣 + 𝑤 ). The calculation of
this eddy viscosity 𝜇 depends on the type of turbulence modelling. The various types of turbulence
modelling can be divided into three main groups:

Direct Numerical Simulation (DNS)
With DNS, actually, no turbulence is modelled, so T and 𝜇 are zero. This means all turbulent scales
must be resolved down to the Kolmogorov scale. At the Kolmogorov scale, viscosity dominates and
the turbulent kinetic energy is dissipated into heat. A very fine mesh is needed to simulate these small
scales. For this reason, DNS is only used for the purpose of research.



16 Chapter 2. Hopper modelling

Large Eddy Simulation (LES)
With LES, only the large eddies are resolved. The smaller scales need to be modelled and are rep-
resented by an additional stress, which is called the Sub-Grid-Scale (SGS) stress. To calculate this
SGS stress a turbulence model is required. A model which is frequently used nowadays is the Wall
Adapting Local Eddy (WALE) viscosity model. The eddy viscosity, obtained with the SGS model, can
be substituted in Equation 2.56.

Reynolds Averaged Navier-Stokes (RANS)
In RANS all turbulent scales, large and small, are modelled. Again, a turbulence model is needed to
model those turbulent scales. Contrary to DNS and LES, where simulation need to be done in 3D,
simulating in 2D is also possible with RANS. The most basic turbulence model is Prandtl’s mixing length
model. In the Prandtl’s mixing length model, the spatial variation of the eddy viscosity is assumed to
be known on forehand.
If the spatial variation of the eddy viscosity is unknown, a more advanced method is required. The
two-equation turbulence models are frequently used. These models consist of two additional transport
equations. The first equation is for the turbulent kinetic energy 𝑘. The second equation is for the
dissipation rate 𝜖 or the specific dissipation rate 𝜔. The dissipation rate 𝜖 is the rate at which the
turbulent kinetic energy dissipates into heat. The specific dissipation rate 𝜔 is defined as 𝜖/𝑘. An
overview of the different two-equation models can be seen in appendix A.

2.6.5. Turbulent boundary layers

A lot of research has been done about the flow close to the wall e.g., Chieng & Launder[24], Patel,
Rodi & Scheuerer[25], Cebeci & Smith[26]. To describe the flow near the wall, a certain division in
regions is used:

• Inner layer:

– Viscous region
– Buffer region
– Log-law or inertial region

• Defect layer

Figure 2.13: Velocities near the wall
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RANS-models are not able to simulate the flow in the inner layer. Boundary conditions for 𝑘, 𝜖, 𝜔 and
𝜇 need to be applied to model the flow in the inner layer.
The viscous region is the area with an 𝑦+ smaller than 5. In the viscous region the following relation
can be found:

𝑢 = 𝑦 (2.57)

In which 𝑢 and 𝑦 are the non-dimensional velocity and distance:

𝑢 = 𝑢
𝑢∗

(2.58)

𝑦 = 𝑢∗𝑦
𝜈 (2.59)

𝑢∗ = √
𝜏
𝜌 (2.60)

The log-law region is the region with approximately 30 < 𝑦 < 100. The upper limit depends on the
Reynolds number, but an 𝑦 of 100 is often chosen as the upper limit. For the log-law region another
relation is valid:

𝑢 = 1
𝜅 ln (𝑦 ) + 𝐵 (2.61)

𝜅 is 0.40 and B is experimentally found to be between 4.9 and 5.7 for smooth walls. This formula is
often written in the following form:

𝑢 = 1
𝜅 ln (𝐸𝑦 ) (2.62)

E is then between 7.0 and 9.8. A lot of a CFD-packages use a value of 9.8.

For walls with a dimensionless roughness, 𝑘 , above 90 a value of Δ𝐵 has to be subtracted:

Δ𝐵 = 1
𝜅 ln

𝑘 𝑢∗
𝜈 − 3.3 = 1

𝜅 ln 𝑘 − 3.3 (2.63)

This can be subtracted from 2.62:

𝑢 = 1
𝜅 ln (𝐸𝑦 ) −

1
𝜅 ln (𝑘 ) + 3.3 (2.64)

𝑢 = 1
𝜅 ln

𝐸𝑦
𝑘 − 1𝜅 ln 𝑒

. (2.65)

𝑢 = 1
𝜅 ln

𝐸𝑦
𝑒 . 𝑘 (2.66)

𝑢 = 1
𝜅 ln

𝐸𝑦
0.27𝑘 (2.67)

Most CFD-packages use a formula which looks like:

𝑢 = 1
𝜅 ln

𝐸𝑦
1 + 𝐶𝑘 (2.68)

This is a very convenient formulation. For rough walls (𝑘 > 90) 𝐶𝑘 is a lot bigger than one. Equation
2.68 then gives the same outcome as Equation 2.67. And for smooth walls (𝑘 =0) Equation 2.68 gives
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the same outcome as Equation 2.62. Ansys uses a value of C=0.3[34]. With this value of 0.3, one will
attain the exact same formula as Van Rhee[10]uses for rough walls:

𝑢 = 1
𝜅 ln

9.8𝑦
0.3𝑘 = 1

𝜅 ln
32𝑦
𝑘 (2.69)

Simulations which make use of Equation 2.57 are called low-Reynolds simulations. To get an 𝑦 smaller
than 5, the distance between the cell centre of the first cell and the wall needs to be very small.
Therefore, in low-Reynolds simulations a grading of the cell size near the wall is used. This causes the
calculation time of low-Reynolds to be relatively large.

The use of a relation in the log-law region (for example Equation 2.62) is called high-Reynolds simu-
lation. For high-Reynolds, grading near the wall is often not needed. This makes the calculation much
faster, but gives more inaccuracy.

2.7. Hopper Models

In this paragraph, all important hopper models are reviewed. Keeping the processes of Paragraphs 2.2
to 2.6 in mind, it will be discussed to which extend the models represent reality.

2.7.1. Camp

Figure 2.14: Ideal settling basin according to Camp.

Camp[1] assumed a hopper with a horizontal ve-
locity 𝑈, which is constant over the height. Camp
does not take the hindered settling effect into ac-
count, so each particle moves with a straight line
as can be seen in Figure 2.14.

𝑣 is called the ’hopper load parameter’:

𝑣 = 𝑈𝐻𝐿 =
𝑄
𝑊𝐿 (2.70)

The hopper load parameter is the settling veloc-
ity needed to travel from ’point a’ (Figure 2.14)
to the end of the bed. This means that if a parti-
cle fraction has a settling velocity which is bigger
than the hopper load (𝑤 > 𝑣 ), all particles with
this particle diameter will reach the bed indepen-
dent of the height at which these particles enter
the hopper. This is the fraction 1− 𝑝 of the PSD
(figure 2.15).
The particles with 𝑤 < 𝑣 will only settle depend-
ing on the height on which they enter the settling zone (fraction 𝑝 −𝑝 ). After doing some derivation,
it can be found that the percentage of these particles which reach the bed is 𝑤 (𝑝)/𝑣 .
The smallest particles (fraction 𝑝 ) will not settle, because for these particles the horizontal velocity 𝑈
exceeds the scour velocity:

𝑈 (𝐷) = √8
(1 − 𝑛 ) 𝜇Δ𝑔𝐷

𝑓 (2.71)
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The removal ratio is the percentage of all particles which settle onto the bed and can be determined
by:

𝑟 = 1 − 𝑝 +∫ 𝑤 (𝑝)
𝑣 𝑑𝑝 (2.72)

Figure 2.15: Cumulative PSD as function of the settling velocity

Influence of turbulent diffusion
In a later article, which was inspired on the work of Dobbins[3], Camp[2] described the effect of turbu-
lence. By simplifying the advection-diffusion equation (Equation 2.44), Camp arrived at the following
equation:

𝑈𝜕𝛼𝜕𝑥 = Γ
𝜕 𝛼
𝜕𝑧 + 𝑤 𝜕𝛼

𝜕𝑧 (2.73)

To arrive at this formula, Camp made the following simplifications:

1. Stationary flow: = 0

2. The horizontal velocity U is constant in x- and z-direction. In reality, however, a buoyant jet and
density current can be observed.

3. The turbulent diffusion coefficient Γ is constant in x- and z-direction.
4. The vertical mixture velocity is zero, therefore: 𝑤 = −𝑤 . The hindered settling effect is not
taken into account: 𝑤 ≠ 𝑓(𝑐)

An analytical solution of Equation 2.73 was found by separation of variables. Since the analytical
solution was cumbersome in usage, Camp presented his results in the form of figure 2.16. For the
turbulent diffusion coefficient Camp used Γ = 0.075𝐻𝑢∗ in which 𝑢∗ and H are the shear velocity and
total height above the bed, respectively. The removal ration can be calculated with:

𝑟 = ∫ 𝑟 , (𝑝)
𝑤 (𝑝)
𝑣 𝑑𝑝 (2.74)

Next to the assumptions described above to arrive at Equation 2.73, the following assumptions also
lead to discrepancy:

1. Pickup cannot be calculated correctly, since the density current is not modelled.

2. The bed doesn’t rise or erode.
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Figure 2.16: Removal rate with the influence of turbulence

3. The time effect: particles which enter the hopper and don’t settle are assumed to leave the
hopper instantly. In reality particles stay for a while in the hopper. The concentration of the
mixture above the bed influences the overflow concentration.

2.7.2. Vlasblom and Miedema

Vlasblom and Miedema[5] also assumed a uniform flow profile. By fitting the curves in Figure 2.16, new
explicit equations for 𝑟 , were developed. These formulas are a lot easier to use than the analytical
equations of Camp. Over the years Vlasblom and Miedema have been adding features to improve the
model of Camp:

1. The rise of the sand bed in their article of 1996[5]

2. Initially, Vlasblom and Miedema used Equation 2.71 to calculate the critical diameter. Later on,
they used a method based in Shields[7]. This still gives an underestimation of the erosion. In
reality, the velocity at the bottom is higher due to the density current.

3. Ooijens[6] added the time effect by regarding the hopper as an ideal mixing vessel.

4. An estimation of the thickness of the layer of water above the overflow[7]

A clear advantage of the model of Miedema is its simplicity and low calculation times. On the other
hand, this simplicity also gives rise to some inaccuracy or effects which are not incorporated:

1. Since the density current at the bottom is not modelled, there cannot be correctly accounted for
the scour. The critical diameter is now calculated with a wrong velocity profile.

2. Due to the wrongly assumed velocity pattern, the turbulence may differentiate.

3. The near bed concentration cannot be calculated, so it needs to be estimated.

The model of Miedema can predict the overflow losses quite well as can be seen in 2.17 and 2.22. At
the beginning of the loading cycle, though, the overflow concentration is too high and at the end it is
too low. This is due to the uniform velocity profile, which has low velocities at the beginning of the
cycle and higher velocities towards the end.
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Figure 2.17: Comparison of the models of Van Rhee and Miedema[9]

2.7.3. 1DV Model Van Rhee

Figure 2.18: 1DV model

Van Rhee models the hopper as in Figure 2.18. In this model, the fol-
lowing simplifications are made:

1. The sand is uniformly distributed over the whole surface of the
hopper

2. The inflow concentration and discharge which enter zone 2 are as-
sumed to be the same as at the inflow of the hopper

3. All quantities are assumed to be uniformly distributed over the
length of the hopper

4. In reality there is a bed shear stress caused by the density current.
This can reduce the sedimentation velocity. With this 1DV model,
this effect is not simulated. This is an important simplification as
will be seen later on.

The transport of sediment in zone 3 is calculated with the one-
dimensional advection-diffusion equation:

𝜕𝛼
𝜕𝑡 = −𝜕

(𝛼 𝑤 )
𝜕𝑧 + 𝜕

𝜕𝑧 (Γ
𝜕𝛼
𝜕𝑧 ) + 𝛿 , (2.75)

In which 𝛿 , is the source term at the inlet and outlet. 𝑤 is the vertical
velocity of a certain fraction. Van Rhee derives the following formula for
𝑤 :

𝑤 = 𝑤 +𝑤 −∑𝛼 𝑤 (2.76)

𝑤 is the bulk velocity which equals 𝑄/𝐴.
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𝑤 is the slip velocity calculated with:

𝑤 = 𝑤 , (1 −∑𝛼 ) (2.77)

For the exponent 𝑛 the relation of Garside is used. Note that 𝑤 , is negative, since a particles moves
down during settling.

On model scale, the cumulative overflow losses were predicted well. However, compared to a prototype
scale test with the TSHD ’Cornelia’, the 1DV model underpredicted the overflow losses by a factor 5.
Van Rhee gives an explanation for this. During the model tests, the influence of the bed shear stress
on the sedimentation was negligible. At prototype scale, the influence of the bed shear stress has
become significant due to scale effects.

2.7.4. 2DV model Van Rhee

Figure 2.19: Velocities in a hopper at three time steps simulated with the 2DV model of Van Rhee.

Van Rhee also developed a 2D model. An example of a simulation can be seen in Figure 2.19. Compar-
ison between model and measurements show good resemblance. Differences between measured an
simulated overflow losses are small. The velocity profiles are similar and show the same behaviour over
time. The density current of Figure 2.1 is observed. Also the return flow of Figure 2.2 is computed.
The quantitative values are however slightly different. At the inlet, the flow velocity in the jet is higher.
This leads the higher entrainment and hence more dilution of the inflowing mixture. The concentration
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of the density current above the bed is therefore lower. This higher velocity in the jet is caused by the
choice of turbulence model. Air entrainment can also play a role. A large improvement of the model is
the calculation of the reduced sedimentation due to the bed shear. The simulations of this model give
a lot of insight into the processes inside the hopper.

2.7.5. Spearman

The 1DV model of Spearman[11] looks very similar to the 1DV model of Van Rhee. The hopper is
divided in 20 cells which are layered on top of each other. Just like Van Rhee, he assumes that the
sediment influx is uniformly distributed over the bottom of the hopper. Also the vertical transport is
described with Equations 2.75 and 2.76.

Figure 2.20: 1DV Model of Spearman

The difference between the models is the outflow. In the model of Van Rhee(Figure 2.3b) there is only
outflow at the top. Spearman assumes that sediment from every layer flows into the overflow. In his
model there is horizontal flow in the whole hopper. When the mixture arrives at the end of the hopper,
everything moves up and goes through the overflow.

To calculate the horizontal velocity first the pressure gradient is calculated. Every layer is assumed to
have the same value of the pressure gradient:

1
𝜌
𝜕𝑝
𝜕𝑥 = −

𝜏
𝜌ℎ + 𝑈(𝑡) − 𝑈 (𝑡)𝑇 (2.78)

𝜌 is the water density
𝜏 is the shear stress imparted on the bed
ℎ is the water depth
𝑈 is the mean horizontal velocity during the last time-step
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𝑈 is the desired mean velocity which is 𝑄/(𝑊 ∗ 𝐻)
𝑇 is the relaxation time. For this value twice the time step is used.

Next, this value is used to compute the velocities with the one-dimensional equation for horizontal
momentum:

𝜕𝑢
𝜕𝑡 +

1
𝜌
𝜕𝑝
𝜕𝑥 =

𝜕
𝜕𝑧 ((𝜈 + 𝜈 ) 𝜕𝑢𝜕𝑧 ) (2.79)

𝜈 and 𝜈 are the molecular viscosity and eddy viscosity, respectively. The shape of the velocity profile
can be seen in Figure 2.20. With these horizontal velocities, the outflow is calculated.

Since Spearman’s model has a horizontal velocity, a bed shear could be calculated. However, Spearman
doesn’t model the density current causing the erosion to be lower.

The 1DV of Van Rhee was not able to predict overflow losses at prototype scale. On the contrary,
comparing the 1DV model of Spearman with measurements of the TSHD the ’Oranje’, it was shown
that the model is able to predict these overflow losses very well. According to Spearman, at the end of
the loading cycle, the density current plunges directly into the overflow causing higher overflow losses.
Since sediment from every layer goes into the overflow, the overflow losses for Spearman are higher
than the 1DV model of Van Rhee, giving better resemblance at prototype scale.

2.7.6. Braaksma

The model of Braaksma[12] was designed for the field of System & Control. The future goal of this
model is controlling a dredger. By using this sedimentation model, the ideal trajectory of the pump
settings, drag head settings and sailing speed for the next 5 minutes could be calculated. To calculate
the ideal trajectory, the calculation speed is a very important. Braaksma accounts for erosion by using
reduced sedimentation:

𝑣 = 𝑅(𝜃, 𝛼 )𝑣 , (2.80)

Braaksma calculates 𝑅(𝜃, 𝑐 ) in an alternative way:

𝑅 = 𝑄
𝑘 ∗ ℎ (2.81)

ℎ is the height of the water above the bed and 𝑘 a constant defined with a least square method.
The increase in bed volume can then be calculated with:

𝑄 = 𝐴𝑣 = 𝐴 ⋅ 𝑅(𝜃, 𝛼 )−𝛼 𝑤
(1 − 𝛼 )

1 − 𝑛 − 𝛼 (2.82)

For the near bed concentration the following formula is used:

𝛼 = 𝜌 − 𝜌
𝜌 − 𝜌 (2.83)

The mixture density, 𝜌 , he determines by assuming a density profile over the height. For this he tested
three options: a linear, an exponential and a two layer model. After validation with measurements on
a TSHD, the two layer model appeared to be the best. 𝜌 is calculated with the total mass of all the
particles in the mixture divided by the mixture volume. 𝜌 is assumed to be constant in the layer above
the bed. This leads to a near bed concentration which is too low (Equation 2.83).

In the model of Braaksma it is not needed to use a particle diameter as input. During the first dredging
cycle on an excavation site the bed height, overflow level, inflow concentration and inflow discharge
are measured. Next, the 𝑤 , , 𝑘 , 𝜌 and 𝑛(exponent of hindered settling) are determined with a
least squares method. The first loading cycle is modelled with different values of 𝑤 , , 𝑘 , 𝜌 and 𝑛.
The values which give the best fit are used in the rest of the loading cycles at that excavation site.

Because Braaksma has the possibility of using a least squares method, a less accurate model can still
give reasonable results. In this thesis a least squares method is not possible.
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Figure 2.21: Two layer model

2.7.7. Jensen

Jensen inspired his model on Braaksma. An improvement on the model of Braaksma is the usage of
a PSD. Contrary to Braaksma, Jensen uses only one mixture layer instead of two. The concentration
of every particle diameter is assumed to be constant throughout the whole layer. To calculate the
sedimentation velocity he uses a non-dimensional variant of:

𝑣 = −∑(𝛼 𝑤 )
1 − 𝑛 − ∑𝛼 (2.84)

𝑤 was calculated with 𝑤 , (1−∑𝛼 ) . This is possible, because perfect mixing is assumed. Normally,
𝑤 should be calculated with Equation 2.76.

Figure 2.22: Overflow concentration of Test 5 of Van Rhee[10]

The results of this model are poor (Figure 2.22). The concentration of the particles is assumed to be
homogeneous, so when the water level reaches the overflow, directly a high concentration of particles
leaves the hopper.
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2.7.8. Konijn

Figure 2.23: Concentration and velocity after 7 s, 39 s, 100 s and 170 s. , . and /

Konijn[14] has also made a 2DV model. Konijn used an Euler-Euler approach. As explained in Paragraph
2.6.1, a big challenge with Euler Euler is determining the coupling forces. In his model, the coupling
forces were causing instabilities, hence calculation times were huge. To make sure the calculation time
was days instead of weeks, Konijn used a hopper of 1 by 5 meter(a mesh of 90 x 350). Figure 2.23 is
an example of a simulation.

The results of the model are poor. The first thing that can be seen is that there is no (or almost none)
entrainment in the inflowing jet. Secondly, the density current disappears very quickly in the model.
During Test 8 (Figure 2.1) a density current is present throughout the whole measurement.
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A
RANS models

In Paragraph 2.6.4 the idea behind turbulence modelling was explained. In OpenFOAM, several RANS
models are available. A discussion about the different models is given in this appendix.

Standard k-𝜖 model
In a k-𝜖 model the turbulent eddy viscosity is calculated with:

𝜈 = 𝑐 𝑘𝜖 (A.1)

The 𝑘 is the turbulent energy and 𝜖 is the dissipation of turbulent energy. Both are calculated with
their own transport equation.

𝜕𝑘
𝜕𝑡 +

𝜕(𝑢𝑘)
𝜕𝑥 + 𝜕(𝑤𝑘)𝜕𝑧 = 𝜕

𝜕𝑥 (
𝜈
𝜎
𝜕𝑘
𝜕𝑥) +

𝜕
𝜕𝑧 (

𝜈
𝜎
𝜕𝑘
𝜕𝑧 ) + 𝑃 + 𝑃 − 𝜖 (A.2)

𝜕𝜖
𝜕𝑡 +

𝜕(𝑢𝜖)
𝜕𝑥 + 𝜕(𝜖𝑘)

𝜕𝑧 = 𝜕
𝜕𝑥 (

𝜈
𝜎
𝜕𝜖
𝜕𝑥) +

𝜕
𝜕𝑧 (

𝜈
𝜎
𝜕𝜖
𝜕𝑧) + 𝑐 𝜖

𝑘𝑃 + 𝑐 𝑐 𝜖
𝑘𝑃 − 𝑐 𝜖

𝑘 (A.3)

The coefficients can for example be found in Celik[27]. The k-𝜖 model has certain advantages and
disadvantages. It has a good convergence rate and relatively low memory requirements. The biggest
disadvantages are inaccuracy with adverse pressure gradients, strong curvature to the flow.

During the validation of his model, Van Rhee[10] also encountered problems with jets. For neutrally
buoyant jets the spreading is too small. This resulted in velocities which were too high. For buoyant
jets, the spreading is even less than for the neutrally buoyant jets. It is unclear if this was caused by
the k-𝜖 model or the settings during the simulations.
OpenFOAM has two versions of the standard k- model: kEpsilon and buoyantKEpsilon. In
kEpsilon the buoyancy term 𝑃 is omitted. In this thesis, buoyantKEpsilon is used.

By default, in 𝑐 is one in buoyantKEpsilon. Inspired by the work of Henkes[? ], 𝑐 is also
multiplied by a factor tanh(𝑣/𝑢) in buoyantKEpsilon. This means that in horizontal flow 𝑐 is zero
and in vertical flow 𝑐 is one.
Choi & Garcia[42] gave an overview of different researches about the 𝑐 . For vertical flow, 𝑐 should
indeed be one. For horizontal flow, experiments show mixed results. For stably stratified flows, 𝑐
varies between zero and 0.5. For unstable horizontal flows, 𝑐 can be expected to be one.
In figure A.1, it can be seen that 𝑐 has some influence. A low 𝑐 causes more stratification. In
this thesis, the tanh(𝑣/𝑢)-term is omitted. If that is a good choice can be questioned. Keeping the
overview of Choi in mind, a term of 0.3+0.7 tanh(𝑣/𝑢) would probably be better. Some more research
is advisable.
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Figure A.1: Influence of on the overflow losses of Test 8. An inlet of 8 cm, which is rather big, and a very fine mesh was
used. The flux is defined as ( ) ( )

( ) ( ) .

RNG-k-𝜖 model
The RNG-k-𝜖 model is derived from the instantaneous Navier–Stokes equations by using a mathematical
technique called renormalization group theory[43][44]. It has a correction that reduces the modeled
turbulence in presence of large vortical structures. Therefore, it has improved accuracy in rotating
flows.
One of the differences with the standard k-𝜖 model is a varying 𝑐 :

𝑐∗ = 𝑐 −
𝜂 (1 − )
1 + 𝛾𝜂 (A.4)

Where 𝛾=0.012 and 𝜂 =4.38.

𝜂 = √ 𝑃
𝑐 𝜖 (A.5)

The rest of the coefficients differ only slightly from the standard 𝑘 − 𝜖 model and can for example be
found in Han[28] or Van Rhee[10]. Van Rhee[10] did several tests with the RNG-k-𝜖 model. In some
situations it resulted in improvements, but sometimes the results became worse.

Realizable-k-𝜖 model
The realizable-k-𝜖 model is another variation on the standard k-𝜖 model. The main difference is the
calculation of 𝑐 :

𝑐 = 1
𝐴 + 𝐴

∗ (A.6)

For the determination of 𝐴 , 𝐴 , 𝑈∗ and the other variables the reader is referred to Shih[29]. Also
the transport equations of k and 𝜖 are different than in the standard k-𝜖 model. Shih validated the
realizable model for jets. The spreading rate with the realizable model is closer to measurement
results the standard k-𝜖 model.
k-𝜔 model
In the k-𝜔 model the eddy viscosity is calculated by:

𝜈 = 𝑘
𝜔 (A.7)

Both the kinetic energy k and The specific dissipation rate 𝜔 are calculated with their respective trans-
port equation. The k-𝜔 model is more accurate than k-𝜖 near the wall. Therefore, it performs signifi-
cantly better for adverse pressure gradients and separation. In the freestream outside the boundary
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layer, k-𝜖 gives better performance since the 𝜔-equation shows a strong sensitivity in this region[45].
In addition, the need of high mesh resolution near the wall causes extra calculation time.

SST-k-𝜔 model
The SST-k-𝜔 model is a combination of k-𝜔 and k-𝜖. k-𝜔 is used near the wall and k-𝜖 is used in the
rest of the domain. This also leads to more calculation time. Just like the standard k-𝜔 model, it is too
much effort to implement this model in driftFluxFoam.
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Derivation Boundary Conditions

In the log-layer, the dissipation of turbulent kinematic energy equals the production[35]:

𝜌𝜖 = 𝑃 (B.1)

𝜌𝜖 = 𝜏𝜕𝑢𝜕𝑦 (B.2)

𝜌𝜖 = 𝜌𝑢∗
𝜕𝑢
𝜕𝑦 (B.3)

can be calculated by taking the derivative of equation 2.62 or 2.69. This both leads to:

𝜕𝑢
𝜕𝑦 =

𝑢∗
𝜅𝑦 (B.4)

Equation B.4 can be substituted in equation B.3:

𝜖 = 𝑢∗
𝜅𝑦 (B.5)

Equation B.1 can also be used to derive an equation for 𝑘:

𝜌𝜖 = 𝑃 (B.6)

𝜌𝜖 = 𝜏𝜕𝑢𝜕𝑦 (B.7)

The shear stress can be calculated with:

𝜏 = 𝜇 𝜕𝑢
𝜕𝑦 = 𝐶

𝑘
𝜖
𝜕𝑢
𝜕𝑦 (B.8)

Substitution in equation B.7 leads to:

𝜌𝜖 = 𝜌𝐶 𝑘
𝜖
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑦 (B.9)
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Substitution of equation B.4 leads to:

𝜖 = 𝐶 𝑘 𝑢∗
𝜅 𝑦 (B.10)

By using B.5 we get:
𝑢∗
𝜅 𝑦 = 𝐶 𝑘 𝑢∗

𝜅 𝑦 (B.11)

𝑘 = 𝑢∗
𝐶 . (B.12)

The equations B.5 and B.12 can often be found in literature and are the basis of a lot of CFD-calculations.
Van Rhee[10], for instance, uses these equations.

In OpenFOAM, the usage of wall functions is slightly different. Since equations B.5 and B.12 can give
instabilities, OpenFOAM uses a method which is more stable.
During a high-Reynolds calculation, the boundary condition for the 𝑘 is the kqRWallFunction, which
is a simple wrapper around the zero-gradient condition. For a high-Reynolds calculation of 𝜖 the
epsilonWallFunction is frequently used. To get the epsilonWallFunction, equation B.12
needs to be substituted into equation B.5:

𝜖 =
𝐶 . 𝑘 .

𝜅𝑦 (B.13)

To calculate the 𝑘 correctly at the first grid-cell, the production of turbulent kinetic energy, 𝑃, needs
to be calculated correctly. epsilonWallFunction therefore does a correction for the production.
This seems very easy, because in the log-layer the production equals the dissipation (calculated with
equation B.13). OpenFOAM does something different, though:

𝑃 = 𝜏𝜕𝑢𝜕𝑦 = 𝜇
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑦 (B.14)

𝑃 = 𝜇 𝜕𝑢
𝜕𝑦
𝑢∗
𝜅𝑦 (B.15)

In which 𝜇 = 𝜇 +𝜇 and 𝜇 is the turbulent eddy viscosity and 𝜇 is the viscosity of the
fluid. Interestingly, only the eddy viscosity is sometimes taken into account to calculate the production
of turbulent energy (for example in B.8). In other instances, both the fluid viscosity and eddy viscosity
are taken into account (equation B.3 and B.14). Equation B.12 can be substituted for 𝑢∗:

𝑃 = 𝜇 𝜕𝑢
𝜕𝑦
𝑘 . 𝐶 .

𝜅𝑦 (B.16)

To calculate the velocity in the first grid-cell, the viscosity at the wall needs to be calculated correctly.
These corrections are done in the boundary conditions for the viscosity. All these boundary conditions
rely on the following principle:

𝜏 = 𝜇 𝜕𝑢
𝜕𝑦 (B.17)

𝜌 𝑢∗ = 𝜇
𝑢
𝑦 (B.18)

𝜌 𝑢∗ = 𝜇
𝑢
𝑦 (B.19)

𝜇 = 𝜌 𝑦𝑢∗
𝑢 (B.20)
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Now, a smooth or rough wall function can be used to get a formulation of 𝜇 . For a smooth wall,
equation 2.62 is for example used:

𝜇 = 𝜌 𝜅𝑦𝑢∗
ln (𝐸𝑦 ) =

𝜇 𝜅𝑦
ln (𝐸𝑦 ) (B.21)

𝜈 = 𝜈 𝜅𝑦
ln (𝐸𝑦 ) (B.22)

In this thesis the nutkRoughWallFunction is used. The nutkRoughWallFunction uses equation
B.22, but then divides 𝐸 by a factor 1+𝐶𝑘 just like in formula 2.68. This factor 1+𝐶𝑘 accounts for
the roughness.
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