Working Group ‘Sand’ Visits Damen: Perspectives On Sand From Micro to Macro Scale

Working Group ‘Sand’ visiting the Dredging Experience at Damen Dredging Equipment
Working Group ‘Sand’ visiting the Dredging Experience at Damen Dredging Equipment

You may already know, that I am very interested in this miniscule particle that is the foundation of our business. To learn more about this element, I joint the Working Group ‘Sand’ of the Dutch Association for Geological Activities1. It is a colourful group of enthusiasts that collect, photograph and research sand in all its splendour. During the relaxed Saturday afternoon meetings, the members gradually noticed, I had a slightly different, professional interest in sand. They boldly asked if they could visit our company for their annual excursion. Maybe my presentation, by at least the excellent weather made for a very successful event.

Measuring the grain density of sand
Measuring the grain density of sand

One aspect of the sand grains we wanted to measure was the buoyancy of the particles. This is done by measuring the density of the grains. You have a tube of water with a known volume. You add sand with a known mass. And just as Archimedes2 predicted, the water will rise with the displaced volume of the grains. Dividing the mass by the displaced volume yields the density of the grains. Surprisingly, this method is quite accurate. For a static condition this is perfectly satisfying. However, in most dredging situations, the grains are dynamically jostled around in slurry transport or breaking up sediment at the cutter.

Effective grain density due to adherent fluid
Effective grain density due to adherent fluid

When a solid grain is moving through a fluid, it is usually considered as a perfect sphere. Nothing is perfect in nature and grains do have a range of shapes, that at best are similar to potato’s. A very jagged grain will have lot’s of nooks and crannies filled with the fluid. This fluid is moving with the particle and contributes to the mass and volume of the particle. This adherent fluid is much more reliably assumed to be a sphere. Fluids in a zero gravity situation tends to behave like a sphere. The diameter of the sphere can be taken as the maximum diameter of the grain that can be measured.

Measuring the effective volume of sand grains
Measuring the effective volume of sand grains

Through a microscope, you will only be able to see the lateral area or the cross-section of a grain. Both area and volume have a relation to diameter. So, the measured area is reduced to an equivalent round area with an equivalent diameter and consequently an equivalent volume. The volumes and masses of that equivalent volume of sand and the shell of adherent water will yield an apparent density of the moving particle.

Effect of apparent density on dredge performance
Effect of apparent density on dredge performance

In the end, my objective was to learn through the microscope the effect the shape of the sand had on the performance of our dredges. As seen in a calculation in our production estimating program, the effect can be significant. Certainly an influence we want to know and assist our customer with appropriate advise3. My visits to the meetings of the Working Group ‘Sand’ were a real benefit in understanding sand. But, to my surprise, through the working group I also learned to appreciate the beauty of the all the different sand minerals that can be found.

Picture of various sand grains in an interesting mixed sample
Picture of various sand grains in an interesting mixed sample

References

  1. Werkgroep Zand, Stichting GEA
  2. Archimedes, Wikipedia
  3. In house R&D Department, Damen Dredging Equipment

See also

Digital Microscopes, Dino-Lite

Modern Uses And Legendary Excuses For Manual Depth Sounding

Depth sounding lead and rope
Depth sounding lead and rope

Never waste a moment to tell a good story. Usually, you’ll find informative or educational stories on this platform. This time, I literally found an opportunity to tell you a fun story. All it took, was this nifty little classic navigational instrument. The crew on the dredge used to calibrate their modern survey system1 or checked the delivered depth with this ancient tool. Ever seen one like this? It is a depth sounding lead2. Well, I doubt this one was made from lead, based on the estimated weight and appearance, but it does have all the other characteristics of a normal depth sounding lead.

Evolving from a stone on a rope, the depth sounding lead was used to sound the depth. The plummet was made from lead. The rope was marked at regular intervals according to the shoe size of the current king. Cast overboard, the lead sank and keeping the rope tight, the depth at that location could be read from the markings on the vertical rope. It involved some nimble dexterity to stand at the lee side of a fast moving vessel in a choppy sea to handle the lead, a bundle of coiling rope and accurately reading the depth at the right moment. Hands down to all those seafarers that explored the world in old times and managed to navigate the globe on this instrument.

Sounding the depth manually with rope and lead (Credit: Wikipedia)
Sounding the depth manually with rope and lead (Credit: Wikipedia)

The depth was not the only information gained from this action. When you look closely, there is a hole at the bottom of the lead. On the picture above it is empty, but it ought to be filled with grease or wax. When the lead touched the bottom, some of the dirt was caught in the grease. When the lead was retrieved, the cling-ons were inspected. These could be either: sand, mud, gravel, peat, silt or even shells and other biological detritus. The material was reported on the charts also. This made navigation in charted waters easy: compare the sample with the indicated bottom condition. And that brings me to my fun story.

Before the Dutch reclaimed their land, there was a large water body in the Netherlands, called the ‘Zuiderzee’3. Or, South Sea as opposed to the North Sea, which most of you might know. This Zuiderzee, was extensively used for fishing. The skippers did not have charts, but they relied on oral tradition handed down through the ages of where what kind of soil would be available. Near Urk, you might find rocks. Near Pampus, there will be a lot of mud and around Stavoren, there is the famous ‘Vrouwenzand’ (Sand Bank of the Lady of Stavoren4). So, when the fishermen cast their depth sounding leads out, they knew the location of their vessel and the depth beneath it.

Map of the ‘Zuiderzee’ (Credit: Wikipedia)
Map of the ‘Zuiderzee’ (Credit: Wikipedia)

One of those skippers boasted he did not even have to see and feel the sample, but just by tasting it, he could pinpoint his location within a hundred yards. Hard to believe, right? The cabin boy on board thought likewise. So, he devised a cunning plan. After lunch, the skipper went down to the cabin for a short nap and instructed the cabin boy to bring him the lead to taste the sample. But, our clever cabin boy sank the lead in the crate with potato’s. The bottom of the crate was covered with clay from the potato’s. Carefully bringing the sample to the skipper, the cabin boy woke him up and awaited his reaction. The skipper woke up groggily and grappled for the lead with half closed eyes. He stuck his finger in the sample hole and tasted the material inside. Suddenly, his eyes went wide open and he exclaimed: Oh, disaster! The dikes have broken again! The land is flooded and we are sailing over farmer John’s potato patch!

You never know what you dredge from the bottom of a potato crate
You never know what you dredge from the bottom of a potato crate

References

  1. Positioning and survey system, Damen
  2. Depth sounding, Wikipedia
  3. Zuiderzee, Wikipedia
  4. Lady of Stavoren

See also