Sensible Flow Sensing Stories, The Correct Capacity Measurement

Example of a flow meter on a Cutter Suction Dredge
Example of a flow meter on a Cutter Suction Dredge

My last posting was a nice story about how they measured mixture velocity in the old days1. Luckily, we have a much better solution nowadays: the electromagnetic flux flow meter2. It is real time and can be viewed from the convenience of the operating cabin. This device can be part of the production measurement for a CSD, TSHD or sometimes in a separate production measurement unit.

Combined velocity and density indicator in the operating cabin
Combined velocity and density indicator in the operating cabin

The working principle of an electromagnetic flux flow meter is based on the Faraday laws of induction3. When a conductor moves through a magnetic field, a current will flow in the third direction perpendicular to both. Due to the resistance of the water, the resulting potential can be picked up by electrodes that are in contact with the mixture.

Explanation of the electromagnetic flux flow meter
Explanation of the electromagnetic flux flow meter

For the principle to work, the electrodes and the mixture have to be isolated from the housing. This is why you always have some isolating liner in this type of flow meters. Off course, the isolation material will wear down due to the abrasion of the mixture. Usually when working in relatively soft sediments, the isolation liner is made of durable polyurethane rubber. The electrodes are flush with the surface of the liner and are not much exposed to wear. When the liner is worn down, it can be easily replaced by the supplier. When working in a more abrasive environment, a more durable isolation liner can be chosen. e.g. Ceramic tiles embedded in a soft adhesive layer.

Arrangement of an electromagnetic flux flow meter
Arrangement of an electromagnetic flux flow meter

The measured voltage gets processed by an amplifier that has to be placed close by. The outgoing signal is mostly the usual 4-20mA and can be transmitted directly to a velocity indicator or a production indicator. Sure, it is good to have a high velocity, as that represents a good production. But it is also indicating a high power consumption. One is more sensible to increase the mixture density and decrease the velocity for an efficient production. To monitor the dredge process, both signals can be combined in a single indicator to present the production to the operator.

Example of different executions of production indicators
Example of different executions of production indicators

The left example is the classic ‘mechanical’ cross-needle indicator. Where the needles intersect, the production can be read on the lines between the scales. On the right, the rotating needles have been replaced by digital linear scales. The velocity is represented horizontally and the density vertically. Consequently, the production lines are also modified. Instead of a high production vertically in the centre, the highest production is now in the upper right corner.

These flow sensors are quite accurate and are reliably indicating the correct value. Still, it is good practice to check the indicated flows, after installation. This calibration can be done for one or two points. The easiest check point is with static water. The other point will be with some known flow. If the installation is on a TSHD, it is straightforward to fill the hopper. Be aware, that the flow has to be integrated over the filling time. For a CSD type application we may have to resort to the described end of pipe indicator from previous post. And if the values are off, erratic or otherwise not making sense, you might have to check whether the housing of the sensor is correctly grounded to both other flanges.

Ungrounded and correctly grounded housing of a flow sensor
Ungrounded and correctly grounded housing of a flow sensor

References

  1. Increase Your Dredging Knowledge At The End Of The Discharge Line, Discover Dredging
  2. Magnetic flow meter, Wikipedia
  3. Faraday’s law of induction, Wikipedia

See also