Sunken Treasures From ¡VAMOS! At Silvermines

Overview of the ¡VAMOS! test operation in the Magcobar Pit, Silvermines, Ireland

Last week, I was at a test site for the ¡VAMOS! project. It was in the abandoned Magcobar Pit1. Well, only in ancient times, people have been digging for silver at this location. In 1963 the site was opened for a large scale operation to mine Baryte2. A mineral used in the oil industry. After the veins ran out in the open cast mine, they continued underground, extending the tunnels almost to the next mine in an adjacent area. Then they had to stop operation altogether and the pit got filled with water from a small river that now enters in an attractive waterfall. So far the historic perspective of this site. Currently the forgotten mine is bustling with activity. So many people and equipment was brought in from all corners from Europe, it looked like a circus has come to town.

The ¡VAMOS! road show on its way to Silvermines, Ireland

When I came there, the team had already set up camp and assembled the Launch and Recovery Vessel. The Mining Vehicle was ready to be deployed and we could commission and test the special drive we had provided for the project3. Another item we had to commission was the dewatering facility. Well, it is a fancy name for a dump area. Basically, it is a reclamation area, where we can collect the material that has been cut by the mining vehicle and was pumped through the discharge line to the shore. We had one pond for collecting the cuttings and one pond for containing the fines. Eventually all effluent water was skimmed trough an overflow box.

Overview of the dewatering facility

As there might still be some very fine material contained in the overflow water, we wanted to dispose the water at a lower level than where we were going to do the cutting tests with the mining vehicle. This would ensure clear visibility and an undisturbed background turbidity for the effects measurements. A submerged pipe line for dredging is a well-known component in the dredging industry. If e.g. a discharge line of a cutter suction dredge has to cross a busy fairway, the discharge line is submerged under water, so the traffic can pass without interruption.

Example layout of a submerged dredge line

There are several issues to pay attention to. Selecting the right diameter is the first to consider. You definitely don’t want to block the submerged dredge line. In order to reduce the critical velocity and increase the mixture velocity, the diameter of the submerged pipe is usually chosen a bit smaller than the rest of the pipe. Furthermore, you don’t want any air get trapped in the submerged line. Air inside the line will make the pipes float again, usually at the most inconvenient moment and probably damage the line. Positioning the submerged line can be done by actually having the air in the line slowly escape. The line will lose buoyancy and settle on the bottom. Injecting compressed air will float the line again.

Deployment of a submerged dredge line

The mining we are doing at the Magcobar Pit is solely for scientific purposes. The material we gather and sample will not be used. But, we hope our technology will revive some disused mines again to their former glory. At least get some people back at work. There are a lot of little villages that fully depended on the activity of the mine. The little town of Silvermines is still remembering those good old times with a little monument to commemorate a glorious past4.

Memorial for the mining industry in the town of Silvermines


  1. ¡VAMOS! preparing for second field tests in Ireland, ¡VAMOS!
  2. Baryte, Wikipedia
  3. Dual Stage Dredge Pump and Double Action Pump Drive for ¡VAMOS!, Discover Dredging
  4. Silvermines, Wikipedia

See also

Ben Sloof Nominated For KIvI Best Offshore Graduate Student

3D simulation of a hopper loading process

Ben Sloof was one of the best graduate students we had here at our company. For his thesis1, he tackled a complex problem and managed to model this in a reliable simulation. Now he is nominated for best Offshore Graduate Student. Today, there will be a KIvI Offshore lecture evening with a ceremony to award the prize2. Once again3, Ben will deliver a capturing pitch on his thesis. So, let’s review what he has achieved.

Van Rhee and similar ‘Euler’ models

At the chair of Dredging Technology of professor van Rhee, a lot of effort is put in describing the hopper loading in so called ‘Euler’ models. This is where you calculate the flow of the fluid and derive the flux of material that is carried within. Ben is standing on the shoulders of giants here, as by now there are a lot of models available4. We opted to use an existing simulation platform: OpenFOAM. One of the plugins for this open source program is DriftFlux, where the valuable grains are treated as a continuum fluid moving through the rest of the fluid. The extra effort of Ben, was to modify this DriftFlux plugin to account for settling and scour. This is in itself is already an unprecedented feat. Complicated by the unstructured calculations within DriftFlux and OpenFOAM. Nonetheless, after careful verification, he was able to perform interesting simulations of the hopper loading process.

Concentration and Velocity

After careful examination of the simulations, Ben started to see patterns in the flow. These set him on a track to build a whole new model. This new layer model credibly describes the process as well, without the complexity of a CFD simulation. As the development of a multi-fraction version of the OpenFOAM platform is still in progress, final verification is still pending. At least, the differences we see between the single fraction model and reality can be explained by what can be expected. It is open to further expansion with future research and can be used as a starting point for the next improvement.

Introduction to the key components of the proposed new ‘Layer Model’ (1DV)

And that is an insight worthy of extra appraisal: finally cracking the riddle of the sands settling in the hopper. We hope you will receive the prize. You deserve it.

Good luck Ben, we wish you all the best on your future voyages to unknown destinations. We are sure you’ll be blessed and a blessing, wherever you go.

Setting sail to distant shores


  1. Graduation of Ben Sloof: Hopper Loading Model and Overflow Losses
  2. KIvI Evening: Johan Sverdrup Platform Installatie
  3. Hopper Loading: What Happens Beneath the Surface
  4. IADC Young Author Award for 1DH Hopper Loading Model of Jordy Boone

See also


Don’t rock the boat, don’t tip the boat over

DOP Dredge ‘Roanoke’, Long Island, USA

We were quietly enjoying our dinner on a relaxed evening in our vacation. Suddenly, we were rudely disturbed by rumble and clatter from across the valley. For our eyes developed a rock slide. Just as sudden as it started it was already over. Perplexed, we were too slow to capture the event and put it on social media. Afterwards, I took some pictures of the rubble. As you can see, it was not even a proper rock slide, more the collapse of a retaining wall.

Retaining wall collapse, Sóller, Mallorca, Spain, June 21, 2018

Come to think about it, it was not the first collapse I witnessed. Back in 2006, I was visiting our DOP dredge at Roanoke on Long Island, NY in the USA. I had to do some measurements and general inspection. I was below decks connecting the data recorder to the drive system and had to check something with the dredge master. Just when I climbed on deck, he yelled at me to hold on. Immediately a torrent of water and sand was flung horizontally over the dredge. Some stones cracked a window in the control cabin. Within seconds a tsunami lifted the dredge for about a meter and we kept rocking until the reflecting waves in the pit eventually subsided.

DOP Dredge Roanoke with pit bank in the foreground, before it collapsed. Older bank collapses in the background.

That was one big bank collapse to me. A bank collapse is a known, although undesirable phenomenon in dredging1. It is a result of dredging methods, relying on the development of an active bank to produce a heavy slurry, that is sucked up. However, the sediment does not consist of a uniform block of sand. Usually, the sediment is deposited in different layers, each with their own geo technical properties. These result in varying propagation velocities of the active banks. When a ‘faster’ sand is under a ‘slower’ sand, the upper layer is not supported anymore and collapses. As the bank slumps down, it displaces an enormous volume of water and this often causes a tidal wave of its own. At Roanoke, the effects were aggravated by the fact, that the upper bank ran all the way to above water level.

Progression of an active bank and bank collapse

As this bank collapse can be expected when dredging with active banks and different sand layers, dredging companies are very keen on predicting these nasty consequences. Not only for the safe working condition of the crew, but also to prevent material damage and eventually for a stable and reliable delivered profile. Exactly this is what is being investigated by dr. Askarinejad in the Laboratory of Geo-Engineering at the Technical University Delft2. He has a beautiful rig, where exactly those conditions can be simulated and measured. With a neat trick he tips the whole test facility to form an instable bank. This makes the bank collapse on demand3.

Static liquefaction tank TU Delft (Credit: dr. A. Askarinejad)

Basically, this is exactly what we can demonstrate with the ‘breaching exhibit ‘ in our dredging experience4. Of course you are welcome to come over. For those who are not in the circumstance to visit us, you can also visit the National Dredging Museum as they now have a breaching exhibit of their own5.

Handover of our old breaching exhibit to the National Dredging Museum


  1. Breaching Process OE 4626, van Rhee, TU Delft
  2. Amin Askarinejad, TU Delft
  3. Statische liquefactietank , Delft Integraal
  4. Loose sand, how hard can it be?
  5. Baggermuseum krijgt model van Damen Dredging, Binnenvaartkrant

See also