How DOP Pumps Developed and Entered the Digital Age

First application of a DOP pump

Recently, my daughter asked me: ‘Dad, what good is it to know your history?’ And I answered: ‘Dear, if you don’t know your past, you will not understand the world around you.’ And the world around us is changing rapidly. The most recent change in our dredging world is the launch of the DOP web shop1. The ultimate entrance into the digital age of a well proven pump. For those young people that only know how to order online (or others interested in dredging history): long before webshops were around, customers and suppliers had a direct relationship with each other.

In the early ‘90s, when Ballast Nedam received the contract to build the railway tunnel near Schiphol Airport2, they had a real tough challenge. The ground water level near Schiphol is very high. Any hole there, fills up rapidly. Using sump pumps to remove the water from a building pit would be useless. To prevent collapse of the sides, there was already sheet piling in place, supported by braces to carry the side load. The space between the braces was too small for a long reach excavator. And the area under the braces too low to work from pontoons. Moreover, the foundation pilings where already in place and they should not get damaged by the excavation with a crab crane.

Construction site of the railway tunnel at Schiphol Airport

At this point, Ballast Nedam contacted their supplier De Groot Nijkerk for a smart solution. Ballast Nedam wanted a small self-contained dredging machine, that would fit between the braces and remove the sediment hydraulically. In a real Gyro Gearloose fashion, De Groot Nijkerk managed to patch together a contraption to prove the concept: ‘the first DOP pump’ (of some sort). It consisted of a normal dredge pump and a submerged jet pump in the same frame.

Proof of concept for a DOP

The tests were successful and the prototype was turned into a production model. The main difference being that the bearing and the dredge pump were designed with a mechanical seal to remove the gland water installation. This mechanical seal required some development on itself, as standard mechanical seals were too fragile. The newly developed seal was of real dredging proof quality. The product was successfully used and word spread around the Dutch contractors about this nifty little dredging machine. As a result, the new DOP was introduced in 1991 and started a career of its own.

Introduction of the first standard DOP on the market

As customers were very original in creating their own solutions for their specific problems, this single product slowly evolved in a whole line of products and options3. For as long as I remember, there was this picture in the product leaflets, that the customer could use to configure their own tool. Hence the slogan: ‘Your job, our tools.’

Typical selection diagram of DOP options

Over time, the range has been reengineered and thoroughly standardised. Due to this standardisation, the sales could also be standardised. Thus, the natural consequence: the webshop. Here you can experience online convenience with personal service.

Real DOP’s on display. Buy them at https://dopshop.damen.com/

References

  1. Damen DOP shop
  2. Schiphol Airport expansion, Wikipedia (Dutch)
  3. The DOP® submersible dredge pump and the possibilities for the contractor, DPC December 1998

See also

 

 

Loose Sand, How Hard Can it Be?

Breaching exhibit at the Damen Dredging Experience

Did you ever tried to build a sand castle? Probably yes. Felt frustrated it always collapsed unexpectedly? At least I did when I was a child. But it took me an academic study to know why. Lucky you. You just have to read this blog post and experience a moment of enlightenment. So, this is good moment to stand up and get some coffee. You will enjoy reading it more and remember my lecture every moment you take a sip.

The second exhibit in the Damen Dredging Experience is an installation, which we call: ‘the Bank’. Usually there is some mechanical or hydraulic action, that will cause the sediment, to become unstable. In this exhibit, we can turn the little wheel at the lower right corner. The first thing you will notice is that at the higher end of the soil surface, the grains will slightly move and start to tumble down along the slope. Where the activation of the particles start at the slope is called the active bank.

Breaching the bank and density flow

The effect we would like to demonstrate, is that different soil types, do have different behaviour in this process. There are three different soil types, from course to fine, from the front to the back. The finer material at the back seams to stay the longest at rest. This is due to a phenomenon that we call ‘dilatancy’1. If a stack of grains is sheared, they have to hobble over the tops of the layer below.

Under pressure due to dilatency on a shear plane

When the grains do hopscotch over each other, they require more space to do so. Effectively the pores increase in volume and the total sediment expands. The extra space cannot be accommodated for by expanding water, it has to be replenished. The extra water has to come from the outside. But the grains themselves are in the way and form resistance to the incoming water. The resistance causes a differential pressure under the ambient pressure, commonly known as ‘vacuum’. And grains under vacuum tend to cling together and form chunks. This happens mostly, when the pores are small, or when the grains are small. Exactly what you can see in the exhibit.

Once the sediment is loosened from the active bank, it rolls down the slope, it behaves like a dense fluid, driven by gravity2. When the slope becomes less, or the running fluid encounters resistance, the sediment will settle again at the so called ‘passive bank’.

Outflow of density current and sedimentation

Here the reverse process happens, the water has more trouble getting out of the suspended flow and run longer. The passive slope will be flatter at finer grains than in more coarse material.

Both processes can be identified in e.g. the DOP3. It is usually suspended on a wire and lowered onto the seabed. Powerful jets excavate a small pit where the suction head takes up the suspended material. The walls of the pit become unstable as an active bank. The loose material flows into the pit. This turns into a continuous process and the active bank, runs away from the suction pit.

Breaching and density flow in a DOP process

Now, it is immediately evident, why DOP pumps have this characteristic suction pipe. It fits snugly in the pit and has the least resistance for the incoming density flow. Another benefit of the suction tube, is that if the bank collapses on the DOP, the suction pipe can be extracted without too much trouble. Extracting a pump from under a collapsed bank imposes the same trouble as creating a passive bank: suction due to dilatancy.

So, your sand castle collapses when water enters the pores. A demonstration of grains becoming as strong as a concrete block by under pressure is a well-known household phenomenon: vacuum packed coffee. Now, you will think of this, whenever you open a new pack of coffee.

Vacuum packed coffee is stable due to under pressure in the pores

References

  1. Dilatancy, Wikipedia
  2. Density current, Wikipedia
  3. DOP pumps, Damen

See also

Perspective on Commissioning – Connecting the DOP’s

DOP pump and power pack, ready for commissioning

A DOP pump1 and it’s drive go together like a horse and carriage, you can’t have one without the other. Basically one product, but two units. Whether hydraulic or electric driven. OK, in some cases, you could use the extra power take off from the excavator or crane, but you still have to hook them up, before they can do any useful work.

And connecting the DOP to its drive is an elementary job, that can cause some headaches, when not done carefully. The modern electric drives require some more certified wizardry, that is beyond the scope of this post. Hydraulic power packs have their own peculiar quirks, that are worth mentioning here.

Usually, the hydraulic hoses come supplied with Snap-tite® connections2. These are quick and prevent most oil spills in the environment. They come with a disadvantage in price and resistance. Ultimately, the DOP should be connected to the power pack like this:

Hydraulic diagram DOP pump and power pack

So, even with such a simple diagram, still things can go horribly wrong. Off course, don’t switch the ‘Pump’ and ‘Return’ line, you will blow some seals on the motor. Most common is a failed connection of the Snap-tite®. When it is not completely tight, the internal valve is not completely open and you have a lot of resistance. So a lot of power on the power pack gets converted to heat on the connection and no performance on the DOP pump. Another common problem is the resistance in the leak line. This can cause terrible things on the hydraulic motor.

One client followed all the instructions in the manual and all advise from the service department, but still could not coach his new DOP to work. Lots of flow at the power pack, but almost no pressure. And the impeller could still be turned by hand. (Warning: never put your hand in an impeller when there is power on the drive!) One of our engineers went over to have a look on board. Well, here is an impression of the situation on deck.

Situation on board during commissioning

He quickly began cleaning up the mess on deck and uncovered how the hydraulic hoses were actually connected.

How the DOP pump was connected (not), actually

Well, that makes sense! Now it was easy to see, why the DOP was not working. Solution, connect the lines correctly and dredge away. Oh, and educate the crew about a tidy workplace.

Ship shape and ready to rumble

Well, after this first basic lesson in connecting the DOP, you are ready to connect your own DOP project. It’s easy as child’s play.

Connect the dots to set up a DOP project yourself (pdf version)

References

  1. Hydraulically driven submersible dredge pump DOP, Damen
  2. Quick Disconnect and Valve Division, Parker Snap-tite

See also