Modern Uses And Legendary Excuses For Manual Depth Sounding

Depth sounding lead and rope
Depth sounding lead and rope

Never waste a moment to tell a good story. Usually, you’ll find informative or educational stories on this platform. This time, I literally found an opportunity to tell you a fun story. All it took, was this nifty little classic navigational instrument. The crew on the dredge used to calibrate their modern survey system1 or checked the delivered depth with this ancient tool. Ever seen one like this? It is a depth sounding lead2. Well, I doubt this one was made from lead, based on the estimated weight and appearance, but it does have all the other characteristics of a normal depth sounding lead.

Evolving from a stone on a rope, the depth sounding lead was used to sound the depth. The plummet was made from lead. The rope was marked at regular intervals according to the shoe size of the current king. Cast overboard, the lead sank and keeping the rope tight, the depth at that location could be read from the markings on the vertical rope. It involved some nimble dexterity to stand at the lee side of a fast moving vessel in a choppy sea to handle the lead, a bundle of coiling rope and accurately reading the depth at the right moment. Hands down to all those seafarers that explored the world in old times and managed to navigate the globe on this instrument.

Sounding the depth manually with rope and lead (Credit: Wikipedia)
Sounding the depth manually with rope and lead (Credit: Wikipedia)

The depth was not the only information gained from this action. When you look closely, there is a hole at the bottom of the lead. On the picture above it is empty, but it ought to be filled with grease or wax. When the lead touched the bottom, some of the dirt was caught in the grease. When the lead was retrieved, the cling-ons were inspected. These could be either: sand, mud, gravel, peat, silt or even shells and other biological detritus. The material was reported on the charts also. This made navigation in charted waters easy: compare the sample with the indicated bottom condition. And that brings me to my fun story.

Before the Dutch reclaimed their land, there was a large water body in the Netherlands, called the ‘Zuiderzee’3. Or, South Sea as opposed to the North Sea, which most of you might know. This Zuiderzee, was extensively used for fishing. The skippers did not have charts, but they relied on oral tradition handed down through the ages of where what kind of soil would be available. Near Urk, you might find rocks. Near Pampus, there will be a lot of mud and around Stavoren, there is the famous ‘Vrouwenzand’ (Sand Bank of the Lady of Stavoren4). So, when the fishermen cast their depth sounding leads out, they knew the location of their vessel and the depth beneath it.

Map of the ‘Zuiderzee’ (Credit: Wikipedia)
Map of the ‘Zuiderzee’ (Credit: Wikipedia)

One of those skippers boasted he did not even have to see and feel the sample, but just by tasting it, he could pinpoint his location within a hundred yards. Hard to believe, right? The cabin boy on board thought likewise. So, he devised a cunning plan. After lunch, the skipper went down to the cabin for a short nap and instructed the cabin boy to bring him the lead to taste the sample. But, our clever cabin boy sank the lead in the crate with potato’s. The bottom of the crate was covered with clay from the potato’s. Carefully bringing the sample to the skipper, the cabin boy woke him up and awaited his reaction. The skipper woke up groggily and grappled for the lead with half closed eyes. He stuck his finger in the sample hole and tasted the material inside. Suddenly, his eyes went wide open and he exclaimed: Oh, disaster! The dikes have broken again! The land is flooded and we are sailing over farmer John’s potato patch!

You never know what you dredge from the bottom of a potato crate
You never know what you dredge from the bottom of a potato crate

References

  1. Positioning and survey system, Damen
  2. Depth sounding, Wikipedia
  3. Zuiderzee, Wikipedia
  4. Lady of Stavoren

See also

Sniffing Out The Details Of Dredge System Fittings

Sniffer valve on the discharge line
Sniffer valve on the discharge line

The mixture carrying system of a cutter suction dredge, is more than just a cutter and a pump in a pontoon. In the dredge system, there are many valves and fittings, that make the system work. One question I was asked, what these extra valves do. Actually, there are several valves, that are worth mentioning. The sniffer valve, the vacuum relief valve and the non-return valve. For working in the designed operating point, you don’t need them. But, to get there and back, they can be quite useful.

Dredge system layout and fitting locations
Dredge system layout and fitting locations

The first valve is affectionally called a sniffer valve. A more descriptive name would be ‘discharge line de aerator valve’. Usually, it consists of a floating ball in a cage with a seat at the top, that can be closed by the ball. Provided the ladder is already under water and starting up the dredge pump from a fresh situation, probably air is in the high onboard discharge pipe sections on deck. Behind the dredge, the line goes down again and the air is basically trapped, preventing the dredge pump from properly priming. The sniffer valve allows the air to escape and the water to enter the floating discharge pipe at the water line. Problem solved.

Arrangement and operation of a sniffer valve
Arrangement and operation of a sniffer valve

On the other hand, when the discharge pressure falls, the ball floats down with the receding water level. This opens the top and allows air to enter the pipe again. Which is no problem as it can be expelled again through the same sniffer valve. When the water can flow away from the high section on board, this will break the water volume in the system. When opening the pump, only the small section between pump outlet and bulk head passage will fall in the pump well. Or, if properly executed: need to be drained and discharged.

A last function of the sniffer valve is in case there is a blockage of the suction pipe. There will be no new mixture flowing in, but the mixture in the discharge line still has a lot of momentum. For a 1 km, 500ø mm pipe, the mixture has the equivalent momentum of a 75 ton truck barrelling down the pipe at 80 km/h. You don’t stop that in an instant either. The mixture keeps flowing and draws a vacuum. The sniffer ball drops and allows air to enter the pipe.

A better way to prevent the vacuum, is to install a vacuum valve in the suction line. That will allow water in and enable you to clean the discharge line without a cavitating pump. Once the suction block is removed, the relief valve opens again and mixture can be inserted in the dredge line system.

Suction pipe vacuum relief valve
Suction pipe vacuum relief valve

In case there is a high discharge height, the mixture mass will not be broken by the sniffer valve. The geodetic pressure will close the sniffer and all of the mixture volume wants to return through the system out of the suction mouth; or open pump, swamping the dredge. To prevent this from happening, a non-return valve can be mounted in the onboard discharge line.

On board discharge non-return valve
On board discharge non-return valve

These fittings will cover most operational situations. There might be even more for exceptional situations, depending on the design choices by the manufacturer1 and to the taste of the owner.2 e.g. We provide a suction deaerating valve. Any ideas about such a provision?

Suction deaerating valve
Suction deaerating valve

References

  1. Cutter Suction Dredger, Damen
  2. Product Finder Dredging, Damen

See also

Sunken Treasures From ¡VAMOS! At Silvermines

Comment

04/03/2020, Mark:

I did receive the right comment about to the purpose of the suction deaerator valve. It is indeed for letting out the air trapped in the suction pipe when the ladder is being lowered. It could be argued that the air will also leave through the sniffer valve at the back of the dredge. If somehow, the air would have trouble escaping all the way to the back, the pump will be very slow in priming itself. Providing a deaerator on the local high at the bulkhead passage, the suction line can purge the air there and the pump starts quicker.

 

CEDA DMC Works On A Guidance Paper For Soil Investigation

CEDA Dredging Management Commission WG on Soil Investigation (Credit: CEDA)
CEDA Dredging Management Commission WG on Soil Investigation (Credit: CEDA)

Did you ever start a project and it turned out that the conditions were different than expected? Welcome to the dredging industry. One of the most underestimated preparations for a dredging project is the soil investigation. As this investigation is of the utmost importance for the dredging community, the DMC is preparing a guidance paper on this topic1, which we discussed last meeting (February 7, 2020, IMDC, Antwerp).

Working for a dredging equipment manufacturer, I am not much involved in the actual soil investigation. However, often our clients base their purchase of a specific type of equipment on the soil investigation and as such we are often presented with the reports on soil investigation. Based on these reports, we calculate the possible production for various types and advise the client for a dredge that will meet their requirements on the maximum production. most of the time we provide a good advise and the client is happy.

Off course there have been occasions where the performance was not as expected. Often because the report on the soil investigation was inadequate. Either the report did not contain all the details, or the investigation itself was lousy. Either way, rubbish in, is rubbish out. Just as an example, let me tell you what can go wrong, when the information is not representing the real circumstances.

One of our products are the so called ‘DOP Dredges’2. They are based around the versatile DOP pump. Basically, it a DOP suspended on an A-frame on a pontoon with a powerpack. The DOP can be lowered into the sediment and create a typical suction dredge pit. The production is more based on the rate that water can enter the bank face and the velocity that the banks recede. Our client provided us a Particle Distribution Diagram of the available sediment3. It was a nice narrow graded sand, but there was a considerable fines tail on the lower end. This was being dealt by the washing and screening installation. According to the client was this the sand characteristic from the whole pit. And what could be better? If you excavate all the material, you really know what is there, right?

Difference between expected soil conditions (left) and real situation (right)
Difference between expected soil conditions (left) and real situation (right)

Well no. As it happened, there were cohesive silt layers between the narrow graded sand layers. When dredging, they sucked at the bottom of the pit. Any silt layers gradually broke of and disintegrated by the eroding density flow. As the pit was created over a long period, the falling chunks of silt just slid down the slope, without causing any harm.

Enter: the new DOP dredge. It started in a new corner of the pit and initially had some trouble penetrating the silt layer. Eventually it managed to get through and started excavating a cavity below the silt layer. These broke of, burying the DOP. Without any possibility to recover the DOP, it turned into a very expensive anchor.

Risk of getting your DOP trapped in a cavity under the cohesive silt layers and the solution
Risk of getting your DOP trapped in a cavity under the cohesive silt layers and the solution

If the presence of these cohesive silt layers would have been known, we would have adapted the suction pipe for a deeper penetration. That prevents the DOP becoming covered and facilitates easier extraction. This story proves two things: 1. A proper soil investigation can prevent costly accidents and budget runovers. 2. A DOP can be modified to most requirements, when the circumstances are known.

Meanwhile, the DMC is preparing its guidance document to assist you in preventing problems like this. Follow CEDA for updates4.

Standard suction tube (left) and long suction tube (right)
Standard suction tube (left) and long suction tube (right)

References

  1. Dredging Management Commission, CEDA
  2. DOP Dredger, Damen
  3. A Sample of Soil Samples, Discover Dredging
  4. News, CEDA

See also